20th anniversary seal20th anniversary seal20th anniversary seal

Yttria Stabilized Zirconia (6 Mol. %)

Linear Formula:

Y2O3 • ZrO2

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Yttria Stabilized Zirconia (6 Mol. %)
ZRO-Y06-OX-01
Pricing > SDS > Data Sheet >

Yttria Stabilized Zirconia (6 Mol. %) Properties (Theoretical)

Appearance Solid
Melting Point N/A
Boiling Point N/A
Density N/A

Yttria Stabilized Zirconia (6 Mol. %) Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Transport Information N/A
MSDS / SDS

About Yttria Stabilized Zirconia (6 Mol. %)

Yttria Stabilized Zirconia is available both partially and fully stabilized. Grades are available for applications include structural ceramics for turbine blades and anti-ballistic and armour ceramics and ionically conductive uses. A variety of surface areas can be produced. Forms include tape casting powder, screen printable ink and plasma spray/thermal spray powder. Proprietary formulations can be produced under non-disclosure arrangements. Additional technical information, such as resistivity and ink rheology data, and safety (MSDS) data are also available.

Yttria Stabilized Zirconia (6 Mol. %) Synonyms

YSZ-6

Chemical Identifiers

Linear Formula Y2O3 • ZrO2
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr] 4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Recent Research

TODAY'S SCIENCE POST!

September 19, 2018
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

2D material produces highest ever signals for human embryonic stem cell detection