Skip to main content

Yttrium Aluminum Oxide Sputtering Target

CAS #: 12005-21-9
Linear Formula:
Y3Al5O12
MDL Number
MFCD00213958
EC No.:
234-465-8

ORDER

Product Product Code ORDER SAFETY DATA Technical data
(3N) 99.9% Yttrium Aluminum Oxide Sputtering Target Y-ALO-03-ST SDS > Data Sheet >
(4N) 99.99% Yttrium Aluminum Oxide Sputtering Target Y-ALO-04-ST SDS > Data Sheet >
(5N) 99.999% Yttrium Aluminum Oxide Sputtering Target Y-ALO-05-ST SDS > Data Sheet >
99% Yttrium Aluminum Oxide Sputtering Target Y-ALO-02-ST SDS > Data Sheet >
WHOLESALE/SKU 0000-742-{{nid}}

Yttrium Aluminum Oxide Sputtering Target Properties (Theoretical)

Compound Formula Al5O12Y3
Molecular Weight 593.62
Appearance solid
Melting Point N/A
Boiling Point N/A
Density 4.56 g/mL at 25 °C(lit.)
Solubility in H2O N/A
Exact Mass N/A
Monoisotopic Mass 593.564026
Charge N/A

Yttrium Aluminum Oxide Sputtering Target Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A

About Yttrium Aluminum Oxide Sputtering Target

Oxide IonAmerican Elements specializes in producing high purity Yttrium Aluminum Oxide sputtering Targets with the highest possible density High Purity (99.99%) Metallic Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devises as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Research sized targets are also produced as well as custom sizes and alloys. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. We can also provide targets outside this range in addition to just about any size rectangular, annular, or oval target. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. Oxide compounds are not conductive to electricity. However, certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. Other shapes are available by request.

Synonyms

Yttrium aluminate (Y3Al5O12); Aluminum yttrium garnet; Aluminum yttrium oxide (Al10Y6O24); Pentaaluminum triyttrium oxide; Yttrium aluminate (Al5Y3O12); Yttrogarnet

Chemical Identifiers

Linear Formula Y3Al5O12
Pubchem CID 16217673
MDL Number MFCD00213958
EC No. 234-465-8
IUPAC Name oxo(oxoalumanyloxy) alumane; oxo (oxoalumanyloxy) yttrium; oxo(oxoyttriooxy) yttrium
Beilstein/Reaxys No. N/A
SMILES O=[Y]O[Al]=O.O=[Y]O[Y]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O
InchI Identifier InChI=1S/5Al.12O.3Y
InchI Key ITMSSWCUCPDVED-UHFFFAOYSA-N
Chemical Formula
Molecular Weight
Standard InchI
Appearance
Melting Point
Boiling Point
Density

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.