Yttrium Oxide Sputtering Target

CAS #

Y2O3

Request a Quote

Product Code Product Request Quote
Y-OX-02-ST 99% Yttrium Oxide Sputtering Target Request
Y-OX-03-ST (3N) 99.9% Yttrium Oxide Sputtering Target Request
Y-OX-04-ST (4N) 99.99% Yttrium Oxide Sputtering Target Request
Y-OX-05-ST (5N) 99.999% Yttrium Oxide Sputtering Target Request

About

Oxide IonAmerican Elements specializes in producing high purity Yttrium Oxide Sputtering Targets with the highest possible density High Purity (99.99%) Metallic Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devises as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Research sized targets are also produced as well as custom sizes and alloys. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. We can also provide targets outside this range in addition to just about any size rectangular, annular, or oval target. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes nanoparticles. We also produce Yttrium Oxide as rods, powder and plates. Oxide compounds are not conductive to electricity. Other shapes are available by request.

Synonyms

Yttria, Yttrium sesquioxide, Oxygen(2-); yttrium(3+), Yttrium trioxide, Diyttrium trioxide, Yttrium(3+) oxide

Chemical Identifiers

Formula Y2O3
CAS 1314-36-9
Pubchem CID 518711
MDL MFCD00011473
EC No. 215-233-5
IUPAC Name oxo(oxoyttriooxy)yttrium
Beilstein Registry No. N/A
SMILES O=[Y]O[Y]=O
InchI Identifier InChI=1S/3O.2Y
InchI Key SIWVEOZUMHYXCS-UHFFFAOYSA-N

Properties

Compound Formula O3Y2
Molecular Weight 225.81
Appearance Solid
Melting Point 2425 °C
Boiling Point 4300 °C
Density 5.01 g/cm3
Exact Mass 225.79644
Monoisotopic Mass 225.79644

Health & Safety Info  |  MSDS / SDS

Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Statements 26-36
RTECS Number N/A
Transport Information ZG3850000
WGK Germany 1
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

YSee more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. Elemental Yttrium In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Yttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Research

Recent Research & Development for Yttrium

  • Efficacy and Safety of 120-W Thulium:Yttrium-Aluminum-Garnet Vapoenucleation of Prostates Compared with Holmium Laser Enucleation of Prostates for Benign Prostatic Hyperplasia. Hong K, Liu YQ, Lu J, Xiao CL, Huang Y, Ma LL. Chin Med J (Engl). 2015 5th Apr
  • Infantile Hemangioma: Clinical Characteristics and Efficacy of Treatment with the Long-Pulsed 1,064-nm Neodymium-Doped Yttrium Aluminum Garnet Laser in 794 Chinese Patients. Zhong SX, Tao YC, Zhou JF, Liu YY, Yao L, Li SS. Pediatr Dermatol. 2015 May 7.
  • Neurobehavioral Assessment of Rats Exposed to Yttrium Nitrate during Development. Li CX, Ma C, Fang HQ, Zhi Y, Yu Z, Xu HB, Jia XD. Biomed Environ Sci. 2015 Apr
  • [Upconversion luminescence of Er3+-doped yttrium-stabilized zirconia powders]. Xu B, Zhou YQ, Wang H, Cao LL. Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Dec
  • The influence of yttrium dopant on the properties of anatase nanoparticles and the performance of dye-sensitized solar cells. Zhao B, Wang J, Li H, Wang H, Jia X, Su P. Phys Chem Chem Phys. 2015 May 15.
  • Synthesis and optical characteristics of yttrium-doped zinc oxide nanorod arrays grown by hydrothermal method. Park H, Kim Y, Ji I, Lee SH, Kim JS, Kim JS, Leem JY. J Nanosci Nanotechnol. 2014 Nov
  • Pressure-stabilized superconductive yttrium hydrides. Li Y, Hao J, Liu H, Tse JS, Wang Y, Ma Y. Sci Rep. 2015 May 5
  • Direct observation of the dealloying process of a platinum-yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Malacrida P, Sanchez Casalongue HG, Masini F, Kaya S, Hernández-Fernández P, Deiana D, Ogasawara H, Stephens IE, Nilsson A, Chorkendorff I. Phys Chem Chem Phys. 2015 Mar 16.
  • Treatment of Melasma in Men With Low-Fluence Q-Switched Neodymium-Doped Yttrium-Aluminum-Garnet Laser Versus Combined Laser and Glycolic Acid Peeling. Vachiramon V, Sahawatwong S, Sirithanabadeekul P. Dermatol Surg. 2015 Mar 9.
  • Study of Interaction of Laser with Tissue Using Monte Carlo Method for 1064nm Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) Laser. Majdabadi A, Abazari M. J Lasers Med Sci. 2015 Winter
  • Comparison of Micro-Leakage from Resin-Modified Glass Ionomer Restorations in Cavities Prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) Laser and Conventional Method in Primary Teeth. Bahrololoomi Z, Razavi F, Soleymani AA. J Lasers Med Sci. 2014 Fall

Recent Research & Development for Oxides

  • Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Huang J, Zhu N, Yang T, Zhang T, Wu P, Dang Z. Biosens Bioelectron. 2015 May 14
  • Pilot in vivo investigation of cerium oxide nanoparticles as a novel anti-obesity pharmaceutical formulation. Rocca A, Moscato S, Ronca F, Nitti S, Mattoli V, Giorgi M, Ciofani G. Nanomedicine. 2015 May 20.
  • Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Li B, Pan G, Avent ND, Lowry RB, Madgett TE, Waines PL. Biosens Bioelectron. 2015 May 14
  • Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition. Tang D, Zhang G, Guo S. J Colloid Interface Sci. 2015 May 14
  • Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KC. Int J Nanomedicine. 2015 May 4
  • Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. Umar A, Kumar R, Akhtar MS, Kumar G, Kim SH. J Colloid Interface Sci. 2015 May 7
  • Application of iron oxide anoparticles in neuronal tissue engineering. Ziv-Polat O, Margel S, Shahar A. Neural Regen Res. 2015 Feb: Neural Regen Res
  • Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Sun G, Zhang L, Zhang Y, Yang H, Ma C, Ge S, Yan M, Yu J, Song X. Biosens Bioelectron. 2015 Apr 8: Biosens Bioelectron
  • Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: a systematic review with meta-analysis. Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem Cell Res Ther. 2015 Mar 13: Stem Cell Res Ther
  • Micron-sized iron oxide-containing particles for microRNA-targeted manipulation and MRI-based tracking of transplanted cells. Leder A, Raschzok N, Schmidt C, Arabacioglu D, Butter A, Kolano S, de Sousa Lisboa LS, Werner W, Polenz D, Reutzel-Selke A, Pratschke J, Sauer IM. Biomaterials. 2015 May

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.