Yttrium Sulfate Solution

CAS 7446-33-5
Linear Formula: Y2(SO4)3 . 8H2O
MDL Number: MFCD00149946
EC No.: N/A

Request Quote

(2N) 99% Yttrium Sulfate Solution
(3N) 99.9% Yttrium Sulfate Solution
(4N) 99.99% Yttrium Sulfate Solution
(5N) 99.999% Yttrium Sulfate Solution


Compound Formula H16O20S3Y2
Molecular Weight 610.12
Appearance liquid
Melting Point N/A
Boiling Point 700 °C (1292 °F)
Density 2.5 g/cm3
Monoisotopic Mass 465.66687 Da
Exact Mass N/A
Charge N/A

Health & Safety Info  |  MSDS / SDS

Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Statements 26-37/39
RTECS Number N/A
Transport Information N/A
WGK Germany 3


Sulfate IonYttrium Sulfate Solutions are moderate to highly concentrated liquid solutions of Yttrium Sulfate. They are an excellent source of Yttrium Sulfate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogeneous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal andglass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Yttrium Sulfate Powder. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar cells and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.


Yttrium(III) sulfate octahydrate, Yttrium(+3) sulfate octahydrate, Yttrium sulfate hydrate (2:3:1), Diyttrium trisulfate octahydrate

Chemical Identifiers

Linear Formula Y2(SO4)3 . 8H2O
CAS 7446-33-5
Pubchem CID 165608
MDL Number MFCD00149946
EC No. N/A
Beilstein Registry No. N/A
IUPAC Name Yttrium(+3) sulfate octahydrate
SMILES [Y+3].[Y+3].[O-]S(=O)(=O)[O-].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O
InchI Identifier InChI=1S/3H2O4S.2Y/c3*1-5(2,3)4;;/h3*(H2,1,2,3,4);;/q;;;2*+3/p-6

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Products & Element Information

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.
See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Recent Research

Evaluation of microtensile and tensile bond strength tests determining effects of erbium, chromium: yttrium-scandium-gallium-garnet laser pulse frequency on resin-enamel bonding., Yildirim, T, Ayar M K., Yesilyurt C, and Kilic S , Niger J Clin Pract, 2016 Sep-Oct, Volume 19, Issue 5, p.585-90, (2016)

Yttrium Doped Sb2Te3: A Promising Material for Phase-Change Memory., Li, Zhen, Si Chen, Zhou Jian, Xu Huibin, and Sun Zhimei , ACS Appl Mater Interfaces, 2016 Sep 9, (2016)

Connecting cancer biology and clinical outcomes to imaging in KRAS mutant and wild-type colorectal cancer liver tumors following selective internal radiation therapy with yttrium-90., Magnetta, Michael J., Ghodadra Anish, Lahti Steven J., Xing Minzhi, Zhang Di, and Kim Hyun S. , Abdom Radiol (NY), 2016 Sep 6, (2016)

Evidence of the pressure-induced conductivity switching of yttrium-doped SrTiO3., Dai, LiDong, Wu Lei, Li Heping, Hu HaiYing, Zhuang YuKai, and Liu KaiXiang , J Phys Condens Matter, 2016 Sep 16, Volume 28, Issue 47, p.475501, (2016)

Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model., Caine, Marcus, McCafferty Michael S., McGhee Scott, Garcia Pedro, Mullett Wayne M., Zhang Xunli, Hill Martyn, Dreher Matthew R., and Lewis Andrew L. , J Vasc Interv Radiol, 2016 Sep 15, (2016)

Selective Internal Radiation Therapy/Yttrium-90: Have We Found Its Place?, Harrold, Emily C., Nicholson Patrick J., Tuite David J., and Power Derek G. , J Clin Oncol, 2016 Sep 12, (2016)

A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen., Baytak, Aysegul Kutluay, Teker Tugce, Duzmen Sehriban, and Aslanoglu Mehmet , Mater Sci Eng C Mater Biol Appl, 2016 Sep 1, Volume 66, p.278-84, (2016)

Angiogenic Response following Radioembolization: Results from a Randomized Pilot Study of Yttrium-90 with or without Sorafenib., Lewandowski, Robert J., Andreoli Jessica M., Hickey Ryan, Kallini Joseph R., Gabr Ahmed, Baker Talia, Kircher Sheetal, Salem Riad, and Kulik Laura , J Vasc Interv Radiol, 2016 Sep, Volume 27, Issue 9, p.1329-36, (2016)

The Utility of Unilobar Technetium-99m Macroaggregated Albumin to Predict Pulmonary Toxicity In Bilobar Hepatocellular Carcinoma prior to Yttrium-90 Radioembolization., Kallini, Joseph R., Gabr Ahmed, Kulik Laura, Salem Riad, and Lewandowski Robert J. , J Vasc Interv Radiol, 2016 Sep, Volume 27, Issue 9, p.1453-6, (2016)

Yttrium-90 Radioembolization for Breast Cancer Liver Metastases., Gordon, Andrew C., Salem Riad, and Lewandowski Robert J. , J Vasc Interv Radiol, 2016 Sep, Volume 27, Issue 9, p.1316-9, (2016)

Question? Ask an American Elements Engineer


October 27, 2016
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

For the first time, magnets are be made with a 3-D printer