A Case of Thermal Esophageal Injury Induced by Sodium Picosulfate with Magnesium Citrate.

Title A Case of Thermal Esophageal Injury Induced by Sodium Picosulfate with Magnesium Citrate.
Authors D.H. Yang; B.Wook Bang; K.Sook Kwon; H.Kil Kim; Y.Woon Shin
Journal Case Rep Gastrointest Med
DOI 10.1155/2017/9879843
Abstract

Although thermal esophageal injuries caused by hot food or tea have been reported, thermal esophageal injury due to sodium picosulfate with magnesium citrate (PSMC) used for bowel preparation is rarely reported. We report the case of a 56-year-old man who presented with esophageal injury after ingestion of PSMC. Instead of dissolving the PSMC in water before ingestion, he drank water immediately after swallowing PSMC powder. As soon as he drank water, he developed severe chest pain and hematemesis. Upper endoscopy revealed severe hemorrhagic, ulcerative mucosal change from upper to mid-esophagus. He was hospitalized for nine days, received conservative treatment (fasting and parenteral nutrition), and recovered without complications. When PSMC is used as a colonic cleansing agent, patients should be educated to take it after dissolving it sufficiently in 150?mL of water to avoid esophageal thermal injury.

Citation D.H. Yang; B.Wook Bang; K.Sook Kwon; H.Kil Kim; Y.Woon Shin.A Case of Thermal Esophageal Injury Induced by Sodium Picosulfate with Magnesium Citrate.. Case Rep Gastrointest Med. 2017;2017:9879843. doi:10.1155/2017/9879843

Related Elements

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications