About Carbides

Carbide ion

Carbides are compounds in which the anion is one or more carbon atoms. Most metals form carbide compounds, though not all--indium and gallium, for example, do not. American Elements' manufacturing emphasizes production of metallic carbide materials including boron carbide, cobalt carbide, chromium carbide, hafnium carbide, molybdenum carbide, niobium carbide, tantalum carbide, titanium carbide, vanadium carbide, zirconium carbide, and numerous others. Metallic carbide materials are marketed under the tradename AE Carbides™.

Like diamond, a pure carbon compound, carbide compounds tend to be extremely hard, refractory and resistant to wear, corrosion and heat, making them excellent candidates for coatings for drills and other tools. They often have other valuable properties in combination with toughness, such as electrical conductivity, low thermal expansion and abrasiveness.

Some notable carbides include:

Chromium carbide: A typical example of a carbide compound that combines the refractory and hardness of carbides with some other property attributable to the cation. In this case, the anti-corrosive properties of chromium. Chromium carbide is used extensively in aerospace materials, high temperature drilling parts, welding electrodes and in other high temperature corrosive environments.

Hafnium carbide: Combining the high refractive index of both the element hafnium and of carbides generally, HfC is the most refractory simple binary compound, with a melting temperature of 3,890 ºC.

Silicon carbide: Combines the refractory and hardness of carbides with high thermal conductivity, creating a stiff low thermal expansion material.

Tungsten carbide: The most commonly used of the carbides is tungsten carbide which, when combined with one or more other transition metal carbides, produces the hardest and least costly cutting drills and tools.

American Elements manufactures multiple forms of carbide compounds including solutions, nanopowders, submicron, and -325 mesh powders, and high surface area materials with particle distribution and particle size controlled and certified. We also produce larger -40 mesh, -100 mesh, -200 mesh range sizes and <0.5 mm, 2 mm, 5 mm and other sizes of shot, granules, lump, flake and pieces. Purities include 99%, 99.9%, 99.99%, 99.999% and 99.9999% (2N, 3N, 4N, 5N and 6N).

American Elements maintains industrial scale production for all its carbide products and will execute Non-Disclosure or Confidentiality Agreements to protect customer know-how.

Carbides Products

Aluminum Carbide Aluminum Carbide Powder Antimony Carbide
Arsenic Carbide Barium Carbide Beryllium Carbide
Bismuth Carbide Boralcan Boron Carbide
Boron Carbide Foam Boron Carbide Granule Boron Carbide Honeycomb
Boron Carbide Pieces Boron Carbide Powder Boron Carbide Rod
Boron Carbide Sheet Boron Carbide Sponge Boron Carbide Wool
Cadmium Carbide Calcium Carbide Cerium Carbide
Cesium Carbide Chromium Carbide Chromium Carbide - Nickel Chromium Composite Powder
Chromium Carbide Cr23C6 Chromium Carbide Cr7C3 Chromium Carbide Powder
Cobalt Carbide Copper Carbide Diniobium Carbide
Ditungsten Carbide Dysprosium Carbide Erbium Carbide
Europium Carbide Gadolinium Carbide Germanium Carbide
Gold Carbide Hafnium Carbide Hafnium Carbide Disc
Hafnium Carbide Foam Hafnium Carbide Granules Hafnium Carbide Honeycomb
Hafnium Carbide Ingot Hafnium Carbide Pellets Hafnium Carbide Pieces
Hafnium Carbide Powder Hafnium Carbide Rod Hafnium Carbide Sponge
Hafnium Carbide Tile Hafnium Carbide Wool Hafnium Carbonitride
Holmium Carbide Iridium Carbide Iron Carbide
Iron Carbon Aluminum Alloy Lanthanum Carbide Lanthanum Carbide Powder
Lead Carbide Lithium Carbide Lutetium Carbide
Magnesium Carbide Manganese Carbide Mn23C6 Manganese Carbide Mn3C
Manganese Carbide Mn5C2 Molybdenum Carbide Mo2C Molybdenum Carbide MoC
Neodymium Carbide Nickel Carbide Niobium Carbide Powder
Niobium(IV) Carbide Osmium Carbide Palladium Carbide
Platinum Carbide Potassium Carbide Praseodymium Carbide
Rhenium Carbide Rhodium Carbide Rubidium Carbide
Ruthenium Carbide Samarium Carbide Scandium Carbide
Selenium Carbide Silicon Carbide Silicon Carbide Balls
Silicon Carbide Bricks Silicon Carbide Fiber Silicon Carbide Foam
Silicon Carbide Granule Silicon Carbide Heating Elements Silicon Carbide Honeycomb
Silicon Carbide Monofilament Silicon Carbide Powder Silicon Carbide Rod
Silicon Carbide Sheet Silicon Carbide Sponge Silicon Carbide Tube
Silicon Carbide Wafer Silicon Carbide Wool Silicon Nitride Carbide Foam
Silicon Nitride Carbide Honeycomb Silicon Nitride Carbide Sponge Silicon Nitride Carbide Wool
Silicon Oxycarbide Silver Carbide Sodium Carbide
Strontium Carbide Tantalum Carbide Foam Tantalum Carbide Granules
Tantalum Carbide Honeycomb Tantalum Carbide Powder Tantalum Carbide Sponge
Tantalum Carbide Ta2C Tantalum Carbide TaC Tantalum Carbide Wool
Tantalum Hafnium Carbide Tantalum Niobium Carbide Tellurium Carbide
Terbium Carbide Thallium Carbide Thulium Carbide
Tin Carbide Titanium Aluminum Carbide Titanium Carbide
Titanium Carbide Crucibles Titanium Carbide Powder Titanium Silicocarbide
Tungsten Carbide Copper Alloy Tungsten Carbide Powder Tungsten Carbide/Cobalt Rod
Tungsten Carbide/Cobalt Sheet Tungsten Carbide/Cobalt Spheres Tungsten Carbide/Cobalt Tube
Tungsten Carbide/Cobalt Wire Tungsten Titanium Carbide Tungsten(IV) Carbide (WC)
Vanadium Carbide Vanadium Carbide Powder Ytterbium Carbide
Yttrium Carbide Zinc Carbide Zinc Carbide Foam
Zirconium Boride/Silicon Carbide Zirconium Carbide Zirconium Carbide Foam
Zirconium Carbide Granules Zirconium Carbide Honeycomb Zirconium Carbide Powder
Zirconium Carbide Sponge Zirconium Carbide Tile Zirconium Carbide Wool

Recent Research & Development for Carbides

Introduction of a carbon paste electrode based on nickel carbide for investigation of interaction between warfarin and vitamin K1., Torkashvand, Maryam, Gholivand Mohammad Bagher, Taherpour Avat Arman, Boochani Arash, and Akhtar Arsalan , J Pharm Biomed Anal, 2017 May 30, Volume 139, p.156-164, (2017)

Designing Pseudocapacitance for Nb2O5/Carbide-derived Carbon Electrodes and Hybrid Devices., Lai, Chun-Han, Ashby David, Moz Melissa K., Gogotsi Yury, Pilon Laurent, and Dunn Bruce S. , Langmuir, 2017 May 25, (2017)

Carbon Nanofiber Arrays Grown on Three-Dimensional Carbon Fiber Architecture Substrate and Enhanced Interface Performance of Carbon Fiber and Zirconium Carbide Coating., Yan, Liwen, Zhang Xinghong, Hu Ping, Zhao Guangdong, Dong Shun, Liu Dazhao, Sun Boqian, Zhang Dongyang, and Han Jiecai , ACS Appl Mater Interfaces, 2017 May 24, Volume 9, Issue 20, p.17337-17346, (2017)

Facile visual colorimetric sensor based on iron carbide nanoparticles encapsulated in porous nitrogen-rich graphene., Wu, Siyuan, Huang Hao, Feng Xun, Du Cuicui, and Song Wenbo , Talanta, 2017 May 15, Volume 167, p.385-391, (2017)

Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material., Zhao, Yuyang, Zhan Jiayu, Liu Guorui, Zheng Minghui, Jin Rong, Yang Lili, Hao Liwei, Wu Xiaolin, Zhang Xian, and Wang Pu , J Hazard Mater, 2017 May 15, Volume 330, p.135-141, (2017)

Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation., Kuppuswamy, Subramaniam, Wofford Joshua D., Joseph Chris, Xie Zhu-Lin, Ali Azim K., Lynch Vincent M., Lindahl Paul A., and Rose Michael J. , Inorg Chem, 2017 May 15, Volume 56, Issue 10, p.5998-6012, (2017)

Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires., Zhang, Qian, Cui Zhiguang, Wei Zhiyong, Chang Siang Yee, Yang Lin, Zhao Yang, Yang Yang, Guan Zhe, Jiang Youfei, Fowlkes Jason, et al. , Nano Lett, 2017 May 11, (2017)

Three-Dimensional Proton Beam Writing of Optically Active Coherent Vacancy Spins in Silicon Carbide., Kraus, H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, et al. , Nano Lett, 2017 May 10, Volume 17, Issue 5, p.2865-2870, (2017)