About Niobates

Rubidium Niobate

Niobates are salts containing an anionic grouping of niobium and oxygen. One of the most common niobates is lithium niobate, a compound of niobium, lithium, and oxygen. Single crystals of this compound are used in the production of optical waveguides, optical modulators, and various other linear and non-linear optical applications.

American Elements manufactures multiple forms of niobate compounds including solutions, nanopowders, submicron, and -325 mesh powders, and high surface area materials with particle distribution and particle size controlled and certified. We also produce larger -40 mesh, -100 mesh, -200 mesh range sizes and <0.5 mm, 2 mm, 5 mm and other sizes of shot, granules, lump, flake and pieces. Purities include 99%, 99.9%, 99.99%, 99.999% and 99.9999% (2N, 3N, 4N, 5N and 6N).

American Elements maintains industrial scale production for all its niobate products and will execute Non-Disclosure or Confidentiality Agreements to protect customer know-how.

Recent Research & Development for Niobates

Enhancing the Domain Wall Conductivity in Lithium Niobate Single Crystals., Godau, Christian, Kämpfe Thomas, Thiessen Andreas, Eng Lukas M., and Haußmann Alexander , ACS Nano, 2017 May 23, Volume 11, Issue 5, p.4816-4824, (2017)

Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing., Fang, Zhiwei, Xu Yingxin, Wang Min, Qiao Lingling, Lin Jintian, Fang Wei, and Cheng Ya , Sci Rep, 2017 Mar 30, Volume 7, p.45610, (2017)

Second harmonic generation in nano-structured thin-film lithium niobate waveguides., Wang, Cheng, Xiong Xiao, Andrade Nicolas, Venkataraman Vivek, Ren Xi-Feng, Guo Guang-Can, and Lončar Marko , Opt Express, 2017 Mar 20, Volume 25, Issue 6, p.6963-6973, (2017)

High and Temperature-Insensitive Piezoelectric Strain in Alkali Niobate Lead-free Perovskite., Zhang, Mao-Hua, Wang Ke, Du Yi-Jia, Dai Gang, Sun Wei, Li Geng, Hu Duan, Thong Hao Cheng, Zhao Chunlin, Xi Xiao-Qing, et al. , J Am Chem Soc, 2017 Mar 15, Volume 139, Issue 10, p.3889-3895, (2017)

Voltage-induced waveguides in lithium niobate films on silicon substrates., Chauvet, M, Thoa P, and Bassignot F , Opt Lett, 2017 Mar 15, Volume 42, Issue 6, p.1019-1022, (2017)

Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate., Ahr, Frederike, Jolly Spencer W., Matlis Nicholas H., Carbajo Sergio, Kroh Tobias, Ravi Koustuban, Schimpf Damian N., Schulte Jan, Ishizuki Hideki, Taira Takunori, et al. , Opt Lett, 2017 Jun 01, Volume 42, Issue 11, p.2118-2121, (2017)

Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing., Wang, Peng, Qi Jia, Liu Zhengming, Liao Yang, Chu Wei, and Cheng Ya , Sci Rep, 2017 Jan 23, Volume 7, p.41211, (2017)

On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes., Wang, Min, Xu Yingxin, Fang Zhiwei, Liao Yang, Wang Peng, Chu Wei, Qiao Lingling, Lin Jintian, Fang Wei, and Cheng Ya , Opt Express, 2017 Jan 09, Volume 25, Issue 1, p.124-129, (2017)

Nonlinear mode switching in lithium niobate nanowaveguides to control light directionality., Escalé, Marc Reig, Sergeyev Anton, Geiss Reinhard, and Grange Rachel , Opt Express, 2017 Feb 20, Volume 25, Issue 4, p.3013-3023, (2017)