Crystal structure of rubidium peroxide ammonia disolvate.

Title Crystal structure of rubidium peroxide ammonia disolvate.
Authors T. Grassl; N. Korber
Journal Acta Crystallogr E Crystallogr Commun
DOI 10.1107/S2056989017000354

The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038-1040]. We determined the peroxide bond length to be 1.530?(11)?Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64-66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.

Citation T. Grassl; N. Korber.Crystal structure of rubidium peroxide ammonia disolvate.. Acta Crystallogr E Crystallogr Commun. 2017;73(Pt 2):200202. doi:10.1107/S2056989017000354

Related Elements


See more Rubidium products. Rubidium (atomic symbol: Rb, atomic number: 37) is a Block S, Group 1, Period 5 element with an atomic weight of 5.4678. The number of electrons in each of Rubidium's shells is [2, 8, 18, 8, 1] and its electron configuration is [Kr] 5s1. The rubidium atom has a radius of 248 pm and a Van der Waals radius of 303 pm. Rubidium Bohr ModelRubidium is highly reactive, with properties similar to other Group 1 alkali metals, e.g., rapid oxidation in air. In its elemental form, rubidium has a gray white appearance. Rubidium is found in the minerals lepidolite, leucite, pollucite, carnallite, and zinnwaldite as well as some potassium minerals. Rubidium was discovered by Robert Bunsen and Gustav Kirchhoff in 1861 and was first isolated by George de Hevesy. The name Rubidium, originates from the Latin word rubidus, meaning "dark or deepest red."

Related Forms & Applications