Reactivity of a Molecular Magnesium Hydride Featuring a Terminal Magnesium-Hydrogen Bond.

Title Reactivity of a Molecular Magnesium Hydride Featuring a Terminal Magnesium-Hydrogen Bond.
Authors S. Schnitzler; T.P. Spaniol; J. Okuda
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.6b02509
Abstract

The reactivity of the molecular magnesium hydride [Mg(Me3TACD·Al(i)Bu3)H] (1) featuring a terminal magnesium-hydrogen bond and an NNNN-type macrocyclic ligand, Me3TACD ((Me3TACD)H = Me3[12]aneN4 = 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane), can be grouped into protonolysis, oxidation, hydrometalation, (insertion), and hydride abstraction. Protonolysis of 1 with weak Brønsted acids HX such as terminal acetylenes, amines, silanols, and silanes gave the corresponding derivatives [Mg(Me3TACD·Al(i)Bu3)X] (X = C?CPh, 3; HN(3,5-Me2-C6H3), 4; OSiMe3, 5; OSiPh3, 6; Cl, 7; Br, 8). Single-crystal X-ray diffraction of anilide 4 showed a square-pyramidal coordination geometry for magnesium. No correlation with the pKa values of the acids was detected. Oxidation of 1 with elemental iodine gave the iodide [Mg(Me3TACD·Al(i)Bu3)I] (9), and oxidation with nitrous oxide afforded the ?-oxo-bridged compound [{Mg(Me3TACD·Al(i)Bu3)}2(?-O)] (10) with a linear Mg-O-Mg core, as characterized by single-crystal X-ray diffraction. The Mg-H bond reacted with benzaldehyde, benzophenone, fluorenone, and CO2 under insertion but not with the olefins 1,1,2-triphenylethylene, tert-butylethylene, and cyclopentene. The unstable formate, prepared also by salt metathesis of iodide 9 with potassium formate, revealed ?O,?O' coordination in the solid state. Hydride abstraction with triphenylborane gave the ion pair [Mg(Me3TACD·Al(i)Bu3)(thf)][HBPh3] (16), which catalyzed the hydroboration of polar substrates by pinacolborane.

Citation S. Schnitzler; T.P. Spaniol; J. Okuda.Reactivity of a Molecular Magnesium Hydride Featuring a Terminal Magnesium-Hydrogen Bond.. Inorg Chem. 2016;55(24):1299713006. doi:10.1021/acs.inorgchem.6b02509

Related Elements

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Related Forms & Applications