Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy.

Title Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy.
Authors X. Wang; J. Liu; C.A. Drummond; J.I. Shapiro
Journal Expert Opin Ther Targets
DOI 10.1080/14728222.2017.1311864
Abstract

INTRODUCTION: Clinically, patients with significant reductions in renal function present with cardiovascular dysfunction typically termed, uremic cardiomyopathy. It is a progressive series of cardiac pathophysiological changes, including left ventricular diastolic dysfunction and hypertrophy (LVH) which sometimes progress to left ventricular dilation (LVD) and systolic dysfunction in the setting of chronic kidney disease (CKD). Uremic cardiomyopathy is almost ubiquitous in patients afflicted with end stage renal disease (ESRD). Areas covered: This article reviews recent epidemiology, pathophysiology of uremic cardiomyopathy and provide a board overview of Na/K-ATPase research with detailed discussion on the mechanisms of Na/K-ATPase/Src/ROS amplification loop. We also present clinical and preclinical evidences as well as molecular mechanism of this amplification loop in the development of uremic cardiomyopathy. A potential therapeutic peptide that targets on this loop is discussed. Expert opinion: Current clinical treatment for uremic cardiomyopathy remains disappointing. Targeting the ROS amplification loop mediated by the Na/K-ATPase signaling function may provide a novel therapeutic target for uremic cardiomyopathy and related diseases. Additional studies of Na/K-ATPase and other strategies that regulate this loop will lead to new therapeutics.

Citation X. Wang; J. Liu; C.A. Drummond; J.I. Shapiro.Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy.. Expert Opin Ther Targets. 2017;21(5):531541. doi:10.1080/14728222.2017.1311864

Related Elements

Potassium

Elemental PotassiumSee more Potassium products. Potassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. As with other alkali metals, potassium decomposes in water with the evolution of hydrogen because of its reacts violently with water, it only occurs in nature in ionic salts.Potassium Bohr Model In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.