Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

Title Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.
Authors X.Y. Zhang; C.H. Hsu; S.Y. Lien; S.Y. Chen; W. Huang; C.H. Yang; C.Y. Kung; W.Z. Zhu; F.B. Xiong; X.G. Meng
Journal Nanoscale Res Lett
DOI 10.1186/s11671-017-2098-5
Abstract

Hafnium oxide (HfO2) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO2, resulting in a better chemical passivation. The deposited HfO2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 ?s) to up to 67 ?s.

Citation X.Y. Zhang; C.H. Hsu; S.Y. Lien; S.Y. Chen; W. Huang; C.H. Yang; C.Y. Kung; W.Z. Zhu; F.B. Xiong; X.G. Meng.Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.. Nanoscale Res Lett. 2017;12(1):324. doi:10.1186/s11671-017-2098-5

Related Elements

Hafnium

See more Hafnium products. Hafnium (atomic symbol: Hf, atomic number: 72) is a Block D, Group 4, Period 6 element with an atomic weight of 178.49. Hafnium Bohr ModelThe number of electrons in each of Hafnium's shells is 2, 8, 18, 32, 10, 2 and its electron configuration is [Xe] 4f14 5d2 6s2. The hafnium atom has a radius of 159 pm and a Van der Waals radius of 212 pm. Hafnium was predicted by Dmitri Mendeleev in 1869 but it was not until 1922 that it was first isolated Dirk Coster and George de Hevesy. In its elemental form, hafnium has a lustrous silvery-gray appearance. Elemental HafniumHafnium does not exist as a free element in nature. It is found in zirconium compounds such as zircon. Hafnium is often a component of superalloys and circuits used in semiconductor device fabrication. Its name is derived from the Latin word Hafnia, meaning Copenhagen, where it was discovered.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications