"Switching on" the single-molecule magnet properties within a series of dinuclear cobalt(iii)-dysprosium(iii) 2-pyridyloximate complexes.

Title "Switching on" the single-molecule magnet properties within a series of dinuclear cobalt(iii)-dysprosium(iii) 2-pyridyloximate complexes.
Authors C.D. Polyzou; E.S. Koumousi; Z.G. Lada; C.P. Raptopoulou; V. Psycharis; M. Rouzières; A.C. Tsipis; C. Mathonière; R. Clérac; S.P. Perlepes
Journal Dalton Trans
DOI 10.1039/c7dt02717f
Abstract

The use of 2-pyridinealdoxime (paoH), methyl 2-pyridyl ketone oxime (mepaoH), phenyl 2-pyridyl ketone oxime (phpaoH) and pyridine-2-amidoxime (NH2paoH) for the synthesis of dinuclear CoIII/DyIII complexes is described in the absence or presence of an external base. Complexes [CoDy(pao)3(NO3)3] (1), [CoDy(mepao)3(NO3)3] (2), [CoDy(phpao)3(NO3)3] (3) and [CoDy(NH2pao)3(NO3)3]·3MeOH (4·3MeOH) have been isolated and their structures have been determined by single-crystal X-ray crystallography. The complexes crystallize in non-centrosymmetric (2, 3) or centrosymmetric (1, 4·3MeOH) trigonal space groups and form a family of triply-oximate bridged dinuclear Co(iii)-Dy(iii) complexes. The crystals of 1, 3 and 4·3MeOH contain mixtures of ? and ? enantiomers, whereas complex 2 is enantiomerically pure (?). A 3-fold crystallographic axis (C3) passes through two metal ions in all complexes. The low-spin CoIII and DyIII ions are bridged by three oximate groups belonging to the ?1:?1:?1:? 2-pyridyloximate ligands. The CoIII centre is octahedrally coordinated by the six nitrogen atoms of the deprotonated organic ligands in a facial arrangement. The DyIII centre is bound to an O9 set of donor atoms, its coordination sphere being completed by three bidentate chelating nitrato groups. The coordination polyhedron around DyIII in 1 is best described as the Johnson tricapped trigonal prism, while the coordination geometries of the DyIII centres in 2, 3 and 4·3MeOH are best described as consisting of spherical tricapped trigonal prismatic coordination polyhedra. The spectroscopic data of the complexes are also reported and discussed in the infra-red region in terms of the coordination modes of the ligands involved. The magnetic properties of these complexes were studied between 300 and 1.8 K revealing mainly the depopulation of the DyIIImj sublevels of the ground 6H15/2 state. The intrinsic magnetic anisotropy of the DyIII centers is clearly observed by the non-superimposed magnetization (M) versus H/T data, but single-molecule magnet (SMM) properties were detected only for the mepao--containing complex 2. The origin of these properties in 2 is critically discussed and supported by computational studies.

Citation C.D. Polyzou; E.S. Koumousi; Z.G. Lada; C.P. Raptopoulou; V. Psycharis; M. Rouzières; A.C. Tsipis; C. Mathonière; R. Clérac; S.P. Perlepes."Switching on" the single-molecule magnet properties within a series of dinuclear cobalt(iii)-dysprosium(iii) 2-pyridyloximate complexes.. Dalton Trans. 2017;46(43):1481214825. doi:10.1039/c7dt02717f

Related Elements

Dysprosium

See more Dysprosium products. Dysprosium (atomic symbol: Dy, atomic number: 66) is a Block F, Group 3, Period 6 element with an atomic radius of 162.5. Dysprosium Bohr ModelThe number of electrons in each of dysprosium's shells is [2, 8, 18, 28, 8, 2] and its electron configuration is [Xe]4f10 6s2. The dysprosium atom has an atomic radius of 178 pm and a Van der Waals radius of 229 pm. Dysprosium was first discovered by Paul Emile Lecoq de Boisbaudran in 1886. In its elemental form, dysprosium has a silvery-white appearance. Elemental Dysprosium PictureIt is a member of the lanthanide or rare earth series of elements and, along with holmium, has the highest magnetic strength of all other elements on the periodic table, especially at low temperatures. Dysprosium is found in various minerals including bastnäsite, blomstrandine, euxenite, fergusonite, gadolinite, monazite, polycrase and xenotime. It is not found in nature as a free element. The element name originates from the Greek word dysprositos, meaning hard to get at.

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Related Forms & Applications