Krypton Elemental Symbol
Krypton



French German Italian Portuguese Spanish Swedish
Krypton Krypton Cripto Krípton kriptón Krypton

Krypton Bohr ModelKrypton is a Block P, Group 18, Period 4 element. The number of electrons in each of Krypton's shells is 2, 8, 18, 8 and its electronic configuration is [Ar] 3d10 4s2 4p6. In its elemental form krypton's CAS number is 7439-90-9. The krypton atom has a covalent radius of 116±4.pm and it's Van der Waals radius is 202.pm. Krypton has a concentration about 1 ppm in the atmosphere and can be extracted from liquid air. Krypton was discovered and first isolated by Sir William Ramsay and Morris W. Travers in 1898. The origin of the name Krypton comes from the Greek word kryptos meaning "hidden".

Krypton is not toxic. Krypton information, including technical data, safety data and its high purity properties, research, applications and other useful facts are specified below. Scientific facts such as the atomic structure, ionization energy, abundance on Earth, conductivity and thermal properties are included.


  • Properties
  • Safety Data
  • Research
  • Isotopes
  • Other Elements

Krypton Properties


GENERAL PROPERTIES   PHYSICAL PROPERTIES  
Symbol: Kr Melting Point: -157.36 oC, -251.248 oF, 115.79 K
Atomic Number: 36 Boiling Point: -153.415 oC, -244.147 oF, 119.735 K
Atomic Weight: 83.79 Density: 3000 (85 K) kg m-3
Element Category: noble gases Liquid Density @ Melting Point: 2.413 g·cm−3
Group, Period, Block: 18, 4, p Specific Heat: N/A
    Heat of Vaporization 9.05 kJ mol-1
CHEMICAL STRUCTURE Heat of Fusion 1.64 kJ mol-1
Electrons: 36 Thermal Conductivity: 9.43×10-3  W·m−1·K−1
Protons: 36 Thermal Expansion: N/A
Neutrons: 48 Electrical Resistivity: N/A
Electron Configuration: [Ar]4s23d104p6 Electronegativity: 3.00 (Pauling scale)
Atomic Radius: N/A Tensile Strength: N/A
Covalent Radius: 116±4 pm Molar Heat Capacity: 5R/2 = 20.786 J·mol−1·K−1
Van der Waals radius: 202 pm Young's Modulus: N/A
Oxidation States: 2, 1, 0 Shear Modulus: N/A
Phase: Gas Bulk Modulus: N/A
Crystal Structure: cubic face-centered Poisson Ratio: N/A
Magnetic Ordering: diamagnetic Mohs Hardness: N/A
1st Ionization Energy: 1350.77 kJ mol-1 Vickers Hardness: N/A
2nd Ionization Energy: 2350.39 kJ mol-1 Brinell Hardness: N/A
3rd Ionization Energy: 3565.16 kJ mol-1 Speed of Sound: (gas, 23 °C) 220, (liquid) 1120 m·s−1
       
IDENTIFIERS   MISCELLANEOUS  
CAS Number: 7439-90-9 Abundance in typical human body, by weight: N/A
ChemSpider ID: 5223 Abundance in typical human body, by atom: N/A
PubChem CID: 5416 Abundance in universe, by weight: 40 ppb
MDL Number: MFCD00151310 Abundance in universe, by atom: 0.06 ppb
EC Number: N/A Discovered By: William Ramsay and Morris Travers
Beilstein Number: N/A Discovery Date: 1898
SMILES Identifier: [Kr]  
InChI Identifier: InChI=1S/Kr Other Names: Cripto
InChI Key: DNNSSWSSYDEUBZ-UHFFFAOYSA-N  
       
       
       
       
       


Recent Research & Development for Krypton

  • Youn-Sang Bae, Brad G. Hauser, Yamil J. Colón, Joseph T. Hupp, Omar K. Farha, Randall Q. Snurr, High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites, Microporous and Mesoporous Materials, Volume 169, 15 March 2013
  • Dawid Gaszowski, Marek Ilczyszyn, Hydrogen bonding to xenon: A comparison with neon, argon and krypton complexes, Chemical Physics Letters, Volume 556, 29 January 2013
  • Yao Wang, Musab Abdul Razak, D.D. Do, Toshihide Horikawa, Kunimitsu Morishige, D. Nicholson, A computer simulation and experimental study of the difference between krypton adsorption on a graphite surface and in a graphitic hexagonal pore, Carbon, Volume 50, Issue 8, July 2012
  • B. Beeler, B. Good, S. Rashkeev, C. Deo, M. Baskes, M. Okuniewski, First-principles calculations of the stability and incorporation of helium, xenon and krypton in uranium, Journal of Nuclear Materials, Volume 425, Issues 1–3, June 2012
  • Xiaofeng Tian, Tao Gao, Gang Jiang, Duanwei He, Hongxing Xiao, The incorporation and solution of krypton in uranium dioxide: Density functional theory calculations, Computational Materials Science, Volume 54, March 2012
  • M. Gilbert, C. Davoisne, M. Stennett, N. Hyatt, N. Peng, C. Jeynes, W.E. Lee, Krypton and helium irradiation damage in neodymium–zirconolite, Journal of Nuclear Materials, Volume 416, Issues 1–2, 1 September 2011
  • C. Davoisne, M.C. Stennett, N.C. Hyatt, N. Peng, C. Jeynes, W.E. Lee, Krypton irradiation damage in Nd-doped zirconolite and perovskite, Journal of Nuclear Materials, Volume 415, Issue 1, 1 August 2011
  • Kathleen M. Krause, Matthias Thommes, Michael J. Brett, Pore analysis of obliquely deposited nanostructures by krypton gas adsorption at 87 K, Microporous and Mesoporous Materials, Volume 143, Issue 1, August 2011
  • H.S. Lee, Y.S. Lee, S.H. Seo, H.Y. Chang, The characteristics of the multi-hole RF capacitively coupled plasma discharged with neon, argon and krypton, Thin Solid Films, Volume 519, Issue 20, 1 August 2011
  • Michael Koerdt, Frank Vollertsen, Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation, Applied Surface Science, Volume 257, Issue 12, 1 April 2011
  • J. Gan, D.D. Keiser Jr., B.D. Miller, D.M. Wachs, T.R. Allen, M. Kirk, J. Rest, Microstructure of RERTR DU-alloys irradiated with krypton ions up to 100 dpa, Journal of Nuclear Materials, Volume 411, Issues 1–3, April 2011
  • D. Zilli, P.R. Bonelli, C.J. Gommes, S. Blacher, J.-P. Pirard, A.L. Cukierman, Krypton adsorption as a suitable tool for surface characterization of multi-walled CNTs, Carbon, Volume 49, Issue 3, March 2011
  • A. Kaddouri, I. Ashraf, M. Ait El Fqih, H. Targaoui, A. El Boujlaïdi, K. Berrada, Photon emission from clean and oxygenated Si and SiO2 surfaces bombarded by 5 keV krypton ions, Applied Surface Science, Volume 256, Issue 1, 15 October 2009
  • Ilya Strashnov, Dave J. Blagburn, Jamie D. Gilmour, Hyperfine structure induced isotopic effects in krypton resonance ionization mass spectrometry, Optics Communications, Volume 282, Issue 17, 1 September 2009
  • S. Nsengiyumva, T.P. Ntsoane, A.T. Raji, M. Topíc, G. Kellermann, J.P. Rivière, D.T. Britton, M. Härting, The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 267, Issue 16, 15 August 2009
  • M. Bregant, G. Cantatore, S. Carusotto, R. Cimino, F. Della Valle, G. Di Domenico, U. Gastaldi, M. Karuza, V. Lozza, E. Milotti, E. Polacco, G. Raiteri, G. Ruoso, E. Zavattini, G. Zavattini, Erratum to ‘Measurement of the Cotton–Mouton effect in krypton and xenon at 1064 nm with the PVLAS apparatus’ [Chem. Phys. Lett. 392 (2004) 276] and ‘A precise measurement of the Cotton–Mouton effect in neon’ [Chem. Phys. Lett. 410 (2005) 288], Chemical Physics Letters, Volume 477, Issues 4–6, 6 August 2009
  • Hsien-Hao Mei, Wei-Tou Ni, Sheng-Jui Chen, Sheau-shi Pan, (Q & A Collaboration), Measurement of the Cotton–Mouton effect in nitrogen, oxygen, carbon dioxide, argon, and krypton with the Q & A apparatus, Chemical Physics Letters, Volume 471, Issues 4–6, 26 March 2009
  • I. Strashnov, D.J. Blagburn, N. Thonnard, J.D. Gilmour, Tunable VUV light generation for resonance ionization mass spectrometry of Krypton, Optics Communications, Volume 282, Issue 5, 1 March 2009
  • K. Wittmaack, SIMS analysis of xenon and krypton in uranium dioxide: A comparison of two models of gas-phase ionisation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 266, Issue 24, December 2008
  • J. Fedor, O. Echt, K. Gluch, S. Matt-Leubner, P. Scheier, T.D. Märk, On the role of the II(1/2g) state in spontaneous dissociation of krypton and xenon dimer ions, Chemical Physics Letters, Volume 437, Issues 4–6, 2 April 2007

Krypton Isotopes


Naturally occurring krypton has six stable isotopes: 78Kr, 80Kr, 82Kr, 83Kr, 84Kr, and 86Kr.

Nuclide Symbol Isotopic Mass Half-Life Nuclear Spin
78Kr 77.9203648 Observationally Stable 0+
80Kr 79.9163790 Stable 0+
82Kr 81.9134836 Stable 0+
83Kr 82.914136 Stable 9/2+
84Kr 83.911507 Stable 0+
86Kr 85.91061073 Observationally Stable 0+