Barium Sulfate Solution

CAS #

BaSO4

Request a Quote

Product Code Product Request Quote
BA-SAT-02-SOL (2N) 99% Barium Sulfate Solution Request
BA-SAT-03-SOL (3N) 99.9% Barium Sulfate Solution Request
BA-SAT-04-SOL (4N) 99.99% Barium Sulfate Solution Request
BA-SAT-05-SOL (5N) 99.999% Barium Sulfate Solution Request

About

Sulfate IonBarium Sulfate Solutions are moderate to highly concentrated liquid solutions of Barium Sulfate. They are an excellent source of Barium Sulfate for applications requiring solubilzed Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Barium Sulfate Powder.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar cells and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

Baryte, Sulfuric acid, barium salt (1:1), barium(+2) cation sulfate, Barium salt of sulfuric acid, Actybaryte, Colonatrast, Sulfuric acid, barium salt (1:1), Barosperse, Esophotrast

Chemical Identifiers

Formula BaSO4
CAS 7727-43-7
Pubchem CID 24414
MDL MFCD00003455
EC No. 231-784-4
IUPAC Name barium(2+) sulfate
Beilstein Registry No. N/A
SMILES [Ba+2].[O-]S([O-])(=O)=O
InchI Identifier InChI=1S/Ba.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2
InchI Key TZCXTZWJZNENPQ-UHFFFAOYSA-L

Properties

Compound Formula BaO4S
Molecular Weight 233.39
Appearance White
Melting Point 1,345° C (2,453° F)
Boiling Point 1,600° C (2,912° F)
Density 4.50 g/cm3
Exact Mass 233.857
Monoisotopic Mass 233.857

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS)
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

BaSee more Barium products. Barium (atomic symbol: Ba, atomic number: 56) is a Block S, Group 2, Period 6 element with an atomic weight of 137.27. The number of electrons in each of barium's shells is [2, 8, 18, 18, 8, 2] and its electron configuration is [Xe] 6s2. Barium Bohr ModelBarium is a member of the alkaline-earth metals. The barium atom has a radius of 222 pm and a Van der Waals radius of 268 pm. Barium was discovered by Carl Wilhelm Scheele in 1772 and first isolated by Humphry Davy in 1808. Elemental BariumIn its elemental form, barium is a soft, silvery-gray metal. Industrial applications for barium include acting as a "getterer," or unwanted gas remover, for vacuum tubes, and as an additive to steel and cast iron. Barium is also alloyed with silicon and aluminum as load-bearing alloys. The main commercial source of barium is the mineral barite (BaSO4) it does not occur naturally as a free element . The name barium is derived from the Greek word "barys," meaning heavy.

SSee more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Research

Recent Research & Development for Sulfur

  • Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay. Jost P, Svobodova H, Stetina R. Chem Biol Interact. 2015 May 15
  • Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors. Pardeshi KA, Malwal SR, Banerjee A, Lahiri S, Rangarajan R, Chakrapani H. Bioorg Med Chem Lett. 2015 Apr 23.
  • A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent. Yan X, Li S, Pan YX, Yang Z, Liu X. Beilstein J Nanotechnol. 2015 Apr 1
  • Enabling Prominent High-Rate and Cycle Performances in One Lithium-Sulfur Battery: Designing Permselective Gateways for Li+ Transportation in Holey-CNT/S Cathodes. Zhou Y, Zhou C, Li Q, Yan C, Han B, Xia K, Gao Q, Wu J. Adv Mater. 2015 May 20.
  • Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium-Sulfur Batteries. Ding B, Chang Z, Xu G, Nie P, Wang J, Pan J, Dou H, Zhang X. ACS Appl Mater Interfaces. 2015 May 22.
  • Hydrophilicity-controlled ordered mesoporous carbon for lithium-sulfur batteries. Bae S, Jin X, Park GO, Kim JM. J Nanosci Nanotechnol. 2014 Dec
  • Vertically Aligned Sulfur-Graphene Nanowalls on Substrates for Ultrafast Lithium-Sulfur Batteries. Li B, Li S, Liu J, Wang B, Yang S. Nano Lett. 2015 Apr 10. : Nano Lett
  • Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM. ISME J. 2015 Apr 14.: ISME J
  • Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Wang T, Wang LX, Wu DL, Xia W, Jia DZ. Sci Rep. 2015 Apr 16: Sci Rep
  • Protic-Salt-Derived Nitrogen/Sulfur-Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. Zhang S, Ikoma A, Ueno K, Chen Z, Dokko K, Watanabe M. ChemSusChem. 2015 Apr 8.: ChemSusChem
  • Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Kim JH, Fu K, Choi J, Kil K, Kim J, Han X, Hu L, Paik U. Sci Rep. 2015 Mar 10

Recent Research & Development for Barium

  • Correlation Between Timed Barium Esophagogram and Esophageal Transit Scintigraphy Results in Achalasia. Park YM, Jeon HH, Park JJ, Kim JH, Youn YH, Park H. Dig Dis Sci. 2015 Apr 30.
  • Oxygen diffusion in single crystal barium titanate. Kessel M, De Souza RA, Martin M. Phys Chem Chem Phys. 2015 May 6
  • Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Polonini HC, Brandão HM, Raposo NR, Brandão MA, Mouton L, Couté A, Yéprémian C, Sivry Y, Brayner R. Ecotoxicology. 2015 May
  • Unfolding grain size effects in barium titanate ferroelectric ceramics. Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H. Sci Rep. 2015 May 7
  • One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Ni QQ, Zhu YF, Yu LJ, Fu YQ. Nanoscale Res Lett. 2015 Apr 11
  • Biocompatibility and osteogenesis of the castor bean polymer doped with silica (SiO2) or barium titanate (BaTiO3) nanoparticles. Nacer RS, Silva BA, Poppi RR, Silva DK, Cardoso VS, Delben JR, Delben AA. Acta Cir Bras. 2015 Apr
  • Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Polonini HC, Brandão HM, Raposo NR, Brandão MA, Mouton L, Couté A, Yéprémian C, Sivry Y, Brayner R. Ecotoxicology. 2015 May: Ecotoxicology
  • Anteroposterior radiograph of a barium examination of the oesophagus. Zheng MH, Pan KH. BMJ. 2015 Mar 5: BMJ
  • Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Wang W, Ye Y, Feng J, Chi M, Guo J, Yin Y. Angew Chem Int Ed Engl. 2015 Jan 19: Angew Chem Int Ed Engl
  • Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Primc D, Makovec D. Nanoscale. 2015 Feb 14: Nanoscale

Recent Research & Development for Sulfates

  • Beneficial effects of the traditional medicine Igongsan and its constituent ergosterol on dextran sulfate sodium-induced colitis in mice. Kim SJ, Shin HJ, Lee GH, Kim DS, Kim HL, Park J, Jung Y, Youn DH, Kang J, Hong SH, Um JY. Mol Med Rep. 2015 May 22.
  • Dehydroepiandrosterone sulfate, a useful endogenous probe for evaluation of drug-drug interaction on hepatic organic anion transporting polypeptide (OATP) in cynomolgus monkeys. Watanabe M, Watanabe T, Yabuki M, Tamai I. Drug Metab Pharmacokinet. 2015 Apr
  • Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate. Lv L, Mbadinga SM, Wang LY, Liu JF, Gu JD, Mu BZ, Yang SZ. Appl Microbiol Biotechnol. 2015 May 20.
  • Neuroprotective properties of dehydroepiandrosterone-sulfate and its relationship to interleukin 6 after aneurysmal subarachnoid hemorrhage: a prospective cohort study. Höllig A, Thiel M, Stoffel-Wagner B, Coburn M, Clusmann H. Crit Care. 2015 May 21
  • Effectiveness of levulinic acid and sodium dodecyl sulfate employed as a sanitizer during harvest or packing of cantaloupes contaminated with Salmonella Poona. Webb CC, Erickson MC, Davey LE, Doyle MP. Int J Food Microbiol. 2015 May 2
  • Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Mi-Ichi F, Miyamoto T, Takao S, Jeelani G, Hashimoto T, Hara H, Nozaki T, Yoshida H. Proc Natl Acad Sci U S A. 2015 May 18.
  • Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process. Yang Y, Jiang J, Lu X, Ma J, Liu Y. Environ Sci Technol. 2015 May 19.
  • Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM. ISME J. 2015 Apr 14.: ISME J
  • Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice. Shi N, Clinton SK, Liu Z, Wang Y, Riedl KM, Schwartz SJ, Zhang X, Pan Z, Chen T. Nutrients. 2015 Mar 10

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.