Iron Chromate

CAS #

Fe2(CrO4)3

Request Quote

PRODUCT PRODUCT CODE REQUEST A QUOTE PRINT SAFETY DATA
(2N) 99% Iron Chromate FE-CRAT-02 Request Quote
(3N) 99.9% Iron Chromate FE-CRAT-03 Request Quote
(4N) 99.99% Iron Chromate FE-CRAT-04 Request Quote
(5N) 99.999% Iron Chromate FE-CRAT-05 Request Quote

Properties

Compound Formula Cr3Fe2O12
Molecular Weight 459.67
Appearance

Solid

Melting Point N/A
Boiling Point N/A
Density N/A
Monoisotopic Mass 459.630373
Exact Mass 459.630373

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements H317
Hazard Codes N
Risk Codes 58
Safety Statements 61
RTECS Number N/A
Transport Information UN3077 9/PG III
WGK Germany N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

About

Chromate IonIron Chromate is generally immediately available in most volumes, including bulk quantities. American Elements can produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as numerous other machined shapes and in the form of solutions and organometallic compounds. Ultra high purity and high purity forms also include metal powder, submicron powder and nanomaterials, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above.

Synonyms

Ferric chromate(VI); Iron(III) Chromate; Diiron tris(chromate); Ferric Chromate, Basic; Iron chromium oxide; Chromic acid, iron (3+) salt (3:2); hydroxy-oxido-dioxochromium; iron(3+);

Chemical Identifiers

Formula Fe2(CrO4)3
CAS 10294-52-7
Pubchem CID 21902690
MDL MFCD00049456
EC No. 233-661-0
IUPAC Name dioxido(dioxo) chromium; iron(3+)
Beilstein Registry No. N/A
SMILES [O-][Cr](=O)(=O)[O-].[O-][Cr](=O)(=O)[O-].[O-][Cr](=O)(=O)[O-].[Fe+3].[Fe+3]
InchI Identifier InChI=1S/3Cr.2Fe.12O/q;;;2*+3;;;;;;;6*-1
InchI Key OXLBLZDGMWMXSM-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Products & Element Information

See more Chromium products. Chromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Chromium was first discovered by Louis Nicolas Vauquelin in 1797. It was first isolated in 1798, also by Louis Nicolas Vauquelin. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metal element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it tranforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma' meaning color.

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page. .

Recent Research

Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping., Qifeng, Wei, Xiulian Ren, Jingjing Guo, and Yongxing Chen , J Hazard Mater, 2016 Mar 5, Volume 304, p.1-9, (2016)

Adsorption configuration of sodium 2-quinoxalinecarboxylate on iron substrate: Investigation by in situ SERS, XPS and theoretical calculation., Huo, Sheng-Juan, He Jin-Mei, Chen Li-Hong, and Fang Jian-Hui , Spectrochim Acta A Mol Biomol Spectrosc, 2016 Mar 5, Volume 156, p.123-30, (2016)

Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide., Lai, Li, Xie Qiang, Chi Lina, Gu Wei, and Wu Deyi , J Colloid Interface Sci, 2016 Mar 1, Volume 465, p.76-82, (2016)

Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2., Ensafi, Ali A., Alinajafi Hossein A., Jafari-Asl M, Rezaei B, and Ghazaei F , Mater Sci Eng C Mater Biol Appl, 2016 Mar 1, Volume 60, p.276-84, (2016)

Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride., Mousavi, Mitra, and Habibi-Yangjeh Aziz , J Colloid Interface Sci, 2016 Mar 1, Volume 465, p.83-92, (2016)

Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility., Kopova, Ivana, Stráský Josef, Harcuba Petr, Landa Michal, Janeček Miloš, and Bačákova Lucie , Mater Sci Eng C Mater Biol Appl, 2016 Mar 1, Volume 60, p.230-8, (2016)

Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism., Fu, Fenglian, Lu Jianwei, Cheng Zihang, and Tang Bing , Ultrason Sonochem, 2016 Mar, Volume 29, p.328-36, (2016)

Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater., Han, Weijiang, Fu Fenglian, Cheng Zihang, Tang Bing, and Wu Shijiao , J Hazard Mater, 2016 Jan 25, Volume 302, p.437-46, (2016)

Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism., Shao, Dadong, Ren Xuemei, Wen Jun, Hu Sheng, Xiong Jie, Jiang Tao, Wang Xiaolin, and Wang Xiangke , J Hazard Mater, 2016 Jan 25, Volume 302, p.1-9, (2016)

Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site., Ding, Weixuan, Stewart Douglas I., Humphreys Paul N., Rout Simon P., and Burke Ian T. , Sci Total Environ, 2016 Jan 15, Volume 541, p.1191-9, (2016)