New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances.

Title New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances.
Authors A. Burzlaff; C. Beevers; H. Pearce; M. Lloyd; K. Klipsch
Journal Regul Toxicol Pharmacol
DOI 10.1016/j.yrtph.2017.03.018
Abstract

The potential of molybdenum substances to cause genotoxic effects has been studied previously. However, a review of existing in vitro data, including an assessment of relevance and reliability, has shown that inconsistent results have been observed in the past. To resolve the inconsistencies, new studies were performed with the highly soluble sodium molybdate dihydrate according to OECD test guidelines. In a bacterial reverse mutation assay sodium molybdate dihydrate did not induce reverse mutations in five strains of Salmonella typhimurium. No mutagenic or clastogenic effect was observed at the tk locus of L5178Y mouse lymphoma cells. In a micronucleus test in cultured human peripheral blood lymphocytes no clastogenic or aneugenic effects were seen. These results can be read across to other inorganic molybdenum substances, that all release the molybdate ion [MoO4](2-) under physiological conditions as the only toxicologically relevant species. In summary, a weight of evidence assessment of all available in vitro data shows no evidence of genotoxicity of molybdenum substances.

Citation A. Burzlaff; C. Beevers; H. Pearce; M. Lloyd; K. Klipsch.New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances.. Regul Toxicol Pharmacol. 2017;86:279291. doi:10.1016/j.yrtph.2017.03.018

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Related Forms & Applications