Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta.

Title Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta.
Authors A.Adetokunbo Oyagbemi; T.Olutayo Omobowale; E.Racheal Asenuga; A.Olumuyiwa Adejumobi; T.Olabisi Ajibade; T.Moses Ige; B.Seun Ogunpolu; A.Alex Adedapo; M.Audu Yakubu
Journal Environ Toxicol
DOI 10.1002/tox.22306
Abstract

Human exposure to sodium fluoride through its daily usage is almost inevitable. Cardiovascular and renal dysfunction has been associated with fluoride toxicity. Therefore, this study investigated the mechanism of action of sodium fluoride (NaF) induced hypertension and cardiovascular complications Forty male albino rats of an average of 10 rats per group were used. Group A received clean tap water. Toxicity was induced in Group B to D by administering graded doses of NaF through drinking water ad libitum for 10 days at 150 ppm, 300 ppm, and 600 ppm concentration respectively. Following administration of NaF, there was significant increase in systolic pressure, diastolic pressure and mean arterial pressure. Markers of oxidative stress; malondialdehyde, hydrogen peroxide, advance oxidation protein products, and protein carbonyl were significantly increased in dose-dependent pattern in the cardiac and renal tissues of rats together with significant decrease in the GST activity in NaF-treated rats compared to the control. Also serum markers of inflammation, cardiac, and renal damage including myeloperoxidase, xanthine oxidase, blood urea nitrogen, creatinine, Lactate dehydrogenase (LDH), and Creatinine kinase myocardial band (CK-MB) significantly increased indicating induction of oxidative stress, renal, and cardiac damage after exposure. Histopathology of the kidney and heart revealed aberrations in the histological architecture in NaF-treated rats. Also, immunohistochemistry showed higher expression of nuclear factor kappa beta (NF-kB) in the cardiac and renal tissues of rats administered NaF. Combining all, these results indicate NaF-induced hypertension through generation of reactive oxygen species and activation of renal and cardiac NF-kB expressions. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1089-1101, 2017.

Citation A.Adetokunbo Oyagbemi; T.Olutayo Omobowale; E.Racheal Asenuga; A.Olumuyiwa Adejumobi; T.Olabisi Ajibade; T.Moses Ige; B.Seun Ogunpolu; A.Alex Adedapo; M.Audu Yakubu.Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta.. Environ Toxicol. 2017;32(4):10891101. doi:10.1002/tox.22306

Related Elements

Fluorine

Fluorine is a Block P, Group 17, Period 2 element. Its electron configuration is [He]2s22p5. The fluorine atom has a covalent radius of 64 pm and its Van der Waals radius is 135 pm. In its elemental form, CAS 7782-41-4, fluorine gas has a pale yellow appearance. Fluorine was discovered by André-Marie Ampère in 1810. It was first isolated by Henri Moissan in 1886.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Related Forms & Applications