Synthesis of manganese oxide nanorods and its application for potassium ion sensing in water.

Title Synthesis of manganese oxide nanorods and its application for potassium ion sensing in water.
Authors M.S. Ahn; R. Ahmad; J.Y. Yoo; Y.B. Hahn
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2018.01.081
Abstract

Potassium is an important body mineral that control the cellular and electrical functions in the body. The potassium ion concentration change in human serum causes the risk of acute cardiac arrhythmia. Hence, it is important to monitor the potassium level in drinking water/food to control the intake and prevent its effect. This paper reports synthesis of manganese oxide (MnO) nanorods using low-temperature sol-gel method for the fabrication of non-enzymatic potassium ion sensor. The detailed investigation of the as-synthesized MnOnanorods were carried out using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The morphological and structural observations revealed that this method yield small nanorods with average length and diameters of about 210?±?10?nm and 20?±?3?nm, respectively. Further, as-synthesized ?-MnOnanorods were used to fabricate non-enzymatic potassium ion sensor following the deposition of ?-MnOnanorods on glassy carbon electrode (GCE) with the help of conductive binder. The electrochemical characterizations of fabricated non-enzymatic potassium sensor showed good sensing performance (i.e. sensitivity, selectivity, long term stability, and reproducibility). Moreover, applicability of the sensor to detect potassium ion in water samples were also demonstrated.

Citation M.S. Ahn; R. Ahmad; J.Y. Yoo; Y.B. Hahn.Synthesis of manganese oxide nanorods and its application for potassium ion sensing in water.. J Colloid Interface Sci. 2018;516:364370. doi:10.1016/j.jcis.2018.01.081

Related Elements

Potassium

Elemental PotassiumSee more Potassium products. Potassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. As with other alkali metals, potassium decomposes in water with the evolution of hydrogen because of its reacts violently with water, it only occurs in nature in ionic salts.Potassium Bohr Model In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium.

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Related Forms & Applications