Ultralarge Bending Strain and Fracture-Resistance Investigation of Tungsten Carbide Nanowires.

Title Ultralarge Bending Strain and Fracture-Resistance Investigation of Tungsten Carbide Nanowires.
Authors Y. Sun; Y. Chen; H. Cui; J. Wang; C. Wang
Journal Small
DOI 10.1002/smll.201700389
Abstract

Hard tungsten carbide (WC) with brittle behavior is frequently applied for mechanical purposes. Here, ultralarge elastic bending deformation is reported in defect-rare WC [0001] nanowires; the tested bending strain reaches a maximum of 20% ± 3.33%, which challenges the traditional understanding of this material. The lattice analysis indicates that the dislocations are confined to the inner part of the WC nanowires. First, the high Peierls-Nabarro barrier hinders the movement of the locally formed dislocations, which causes rapid dislocation aggregation and hinders long-range glide, resulting in a dense distribution of the dislocation network. In this case, the loading is dispersed along multiple points, which is then balanced by the complex internal mechanical field. In the compressive part, the possible dislocations predominantly emerge in the (0001) plane and mainly slip along the axial direction. The disordered shell first forms at the tensile side and prevents the generation of nanocracks at the surface. The novel lattice kinetics make WC nanowires capable of substantial bending strain resistance. Analytical results of the force-displacement (F-d) curves based on the double-clamped beam model exhibit an obvious nonlinear elastic characteristic, which originates fundamentally from the lattice anharmonicity under moderate stress.

Citation Y. Sun; Y. Chen; H. Cui; J. Wang; C. Wang.Ultralarge Bending Strain and Fracture-Resistance Investigation of Tungsten Carbide Nanowires.. Small. 2017. doi:10.1002/smll.201700389

Related Elements

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

Related Forms & Applications