Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine.

Title Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine.
Authors Z. Yang; Y. Zhu; M. Chi; C. Wang; Y. Wei; X. Lu
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.09.097
Abstract

The development of highly sensitive and low-cost biosensors for the detection of dopamine is of paramount importance for medical diagnostics. Herein, we report the preparation of a new peroxidase-like catalyst with a uniform heterostructure by using a technique involving electrospinning, annealing and solvothermal reaction. In this catalyst system, cobalt sulfide (CoS) nanoparticles were homogenously distributed and supported on the surface of cobalt ferrite (CoFe2O4) nanotubes. The as-prepared CoFe2O4/CoS hybrid nanotubes showed remarkably high catalytic efficiency as peroxidase mimics toward the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2. Owing to the synergistic effect between the CoFe2O4 and CoS component, the prepared CoFe2O4/CoS hybrid nanotubes exhibited enhanced peroxidase-like activity, exceeding that of either the CoS nanoparticles or CoFe2O4 nanotubes alone. Dopamine has been widely investigated due to its unique function in the nervous system. Consequently, various approaches have been developed for the sensitive determination of dopamine. In this work, a simple and sensitive colorimetric route for the detection of dopamine was established based on the ability of dopamine to induce the reduction of oxidized TMB to TMB with consequent fading of the blue color. This method shows a wide linear range (0-50?M) and a low detection limit of 0.58?M. The unique heterostructure with spinel/sulfide interfaces represents a new concept for the construction of highly efficient and multifunctional biocatalysts.

Citation Z. Yang; Y. Zhu; M. Chi; C. Wang; Y. Wei; X. Lu.Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine.. J Colloid Interface Sci. 2018;511:383391. doi:10.1016/j.jcis.2017.09.097

Related Elements

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications