Iron Nanoparticles

High Purity Fe Nanoparticles / Nanopowder
CAS 7439-89-6


Product Product Code Order or Specifications
(2N) 99% Iron Nanoparticles FE-M-02-NP Contact American Elements
(3N) 99.9% Iron Nanoparticles FE-M-03-NP Contact American Elements
(4N) 99.99% Iron Nanoparticles FE-M-04-NP Contact American Elements
(5N) 99.999% Iron Nanoparticles FE-M-05-NP Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Fe 7439-89-6 24847522 23925 MFCD00010999 231-096-4 N/A [Fe] InChI=1S/Fe XEEYBQQBJWHFJM-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance True Density Bulk Density Melting Point Boiling Point Average Particle Size Size Range Crystal Phase Specific Surface Area Morphology MSDS
55.85 Black 7.874 g/cm3 0.1-0.25 g/cm3 1535°C 2750 °C 100-250 nm N/A N/A 3-7 m2/g spherical
Safety Data Sheet

High Purity, D50 = +10 nanometer (nm) by SEMIron (Fe) Nanoparticles, nanodots or nanopowder are spherical or faceted high surface area metal nanostructure particles. Nanoscale Iron Particles are typically 20-40 nanometers (nm) with specific surface area (SSA) in the 30 - 50 m 2 /g range and also available in with an average particle size of 100 nm range with a specific surface area of approximately 7 m 2 /g. Nano Iron Particles are also available in Ultra high purity and high purity, coated, dispersed, or functionalized (-COOH or -OH) forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil.. Applications for Iron Nanocrystals include in environmental clean up of carbon tetrachloride in contaminated groundwater, magnetic data storage and resonance imaging (MRI) and in coatings, plastics, nanowire, nanofiber and textiles and in certain alloy and catalyst applications. Further research is being done for their potential electrical, dielectric, magnetic, optical, imaging, catalytic, biomedical and bioscience properties. Iron Nano Particles are generally immediately available in most volumes. Additional technical, research and safety (MSDS) information is available.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR IRON NANOPARTICLES HAVE ALSO LOOKED AT
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Iron

  • B.S. Yilbas, I. Toor, C. Karatas, J. Malik, I. Ovali, Laser treatment of dual matrix structured cast iron surface: Corrosion resistance of surface, Optics and Lasers in Engineering, Volume 64, January 2015
  • Ussadawut Patakham, Chaowalit Limmaneevichitr, Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Ming Luo, Shuzhong Wang, Longfei Wang, Mingming Lv, Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion, Journal of Power Sources, Volume 270, 15 December 2014
  • Ercan Avci, Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor, Journal of Power Sources, Volume 270, 15 December 2014
  • Nicholas S. Hudak, Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Yong Zhang, Hongliang Zheng, Yue Liu, Lei Shi, Qingming Zhao, Xuelei Tian, Efficient use of iron impurity in Al–Si alloys, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Lin Lin, Meng Li, Liqing Jiang, Yongfeng Li, Dajun Liu, Xingquan He, Lili Cui, A novel iron (?) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium, Journal of Power Sources, Volume 268, 5 December 2014
  • Jun-chao Zheng, Xing Ou, Bao Zhang, Chao Shen, jia-feng Zhang, Lei Ming, Ya-dong Han, Effects of Ni2+ doping on the performances of lithium iron pyrophosphate cathode material, Journal of Power Sources, Volume 268, 5 December 2014
  • Wassima El Mofid, Svetlozar Ivanov, Alexander Konkin, Andreas Bund, A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution, Journal of Power Sources, Volume 268, 5 December 2014
  • Hiroyuki Usui, Kazuma Nouno, Yuya Takemoto, Kengo Nakada, Akira Ishii, Hiroki Sakaguchi, Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites, Journal of Power Sources, Volume 268, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Weiling Wang, Sen Luo, Miaoyong Zhu, Dendritic growth of high carbon iron-based alloy under constrained melt flow, Computational Materials Science, Volume 95, December 2014
  • Haohua Wen, C.H. Woo, Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Farong Wan, Qian Zhan, Yi Long, Shanwu Yang, Gaowei Zhang, Yufeng Du, Zhijie Jiao, Somei Ohnuki, The behavior of vacancy-type dislocation loops under electron irradiation in iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • R.E. Stoller, Yu.N. Osetsky, An atomistic assessment of helium behavior in iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, F. Jomard, Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Qianxu Ye, Hongbo Zhu, Libo Zhang, Ji Ma, Li Zhou, Peng Liu, Jian Chen, Guo Chen, Jinhui Peng, Preparation of reduced iron powder using combined distribution of wood-charcoal by microwave heating, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Tsuyoshi Honma, Atsushi Sato, Noriko Ito, Takuya Togashi, Kenji Shinozaki, Takayuki Komatsu, Crystallization behavior of sodium iron phosphate glass Na2 - xFe1 + 0.5xP2O7 for sodium ion batteries, Journal of Non-Crystalline Solids, Volume 404, 15 November 2014
  • Guanghua Wang, Kezhu Jiang, Mingli Xu, Chungang Min, Baohua Ma, Xikun Yang, A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer, Journal of Power Sources, Volume 266, 15 November 2014
  • I. Quinzeni, S. Ferrari, E. Quartarone, D. Capsoni, M. Caputo, A. Goldoni, P. Mustarelli, M. Bini, Fabrication and electrochemical characterization of amorphous lithium iron silicate thin films as positive electrodes for lithium batteries, Journal of Power Sources, Volume 266, 15 November 2014