Germanium (Ge) Elemental Symbol
Germanium



French German Italian Portuguese Spanish Swedish
Germanium Germanium Germanio Germânio Germanio Germanium

Germanium(Ge) atomic and molecular weight, atomic number and elemental symbolGermanium is a Block P, Group 14, Period 4 element. The number of electrons in each of germanium's shells is 2, 8, 18, 4 and its electron configuration is [Ar] 3d10 4s2 4p2. Germanium Bohr ModelThe germanium atom has a radius of 122.5.pm and its Van der Waals radius is 211.pm. In its elemental form, CAS 7440-56, germanium is a brittle grayish white semi-metallic element. Germanium is too reactive to be found naturally on Earth in its native state. It is commercially obtained from zinc High Purity (99.999%) Germanium (Ge) Metal ores and certain coals. It is also found in argyrodite and germanite. Germanium was first discovered by Clemens Winkler in 1886. The name Germanium originates from the Latin word "Germania" meaning "Germany".

Germanium is a very important semiconductor and is also finding many other applications including use as an alloying agent, as a phosphor in fluorescent lamps, and as a catalyst. Germanium and germanium oxide are transparent to the infrared and are used in infrared spectroscopes and other optical equipment, including extremely sensitive infrared detectors. High Purity (99.99%) Germanium (Ge) Sputtering TargetThe high refractive index and dispersion properties of its oxides have made germanium useful as a component of wide-angle camera lenses and microscope objectives. Elemental or metallic forms of Germanium include pellets, rod, wire and granules for evaporation source material purposes.High Purity (99.999%) Germanium Oxide (Ge2O) Powder Nanoparticles and nanopowders provide ultra-high surface area which nanotechnology research and recent experiments demonstrate function to create new and unique properties and benefits. Oxides are available in forms including powders and dense pellets for such uses as optical coating and thin film applications. Oxides tend to be insoluble. Fluorides are another insoluble form for uses in which oxygen is undesirable such as metallurgy, chemical and physical vapor deposition and in some optical coatings. Germanium is also available in soluble forms including chlorides, nitrates and acetates. These compounds can be manufactured as solutions at specified stoichiometries.

Germanium is not toxic in its elemental form; however, safety data for Germanium metal, nanoparticles and its compounds can vary widely depending on the form. For potential hazard information, toxicity, and road, sea and air transportation limitations, such as DOT Hazard Class, DOT Number, EU Number, NFPA Health rating and RTECS Class, please see the specific Germanium material or compound referenced in the “Germanium Products” tab below.


  • Properties
  • Safety Data
  • Products
  • Research
  • Isotopes
  • Other Elements

Germanium Properties


GENERAL PROPERTIES   PHYSICAL PROPERTIES  
Symbol: Ge Melting Point: 1211.40 K, 938.25 °C, 1720.85 °F
Atomic Number: 32 Boiling Point: 3106 K, 2833 °C, 5131 °F
Atomic Weight: 72.63 Density: 5.323 g·cm−3
Element Category: metalloid Liquid Density @ Melting Point: 5.60 g·cm−3
Group, Period, Block: 14, 4, p Specific Heat: N/A
    Heat of Vaporization 327.6 kJ mol-1
CHEMICAL STRUCTURE Heat of Fusion 34.7 kJ mol-1
Electrons: 32 Thermal Conductivity: 60.2 W·m−1·K−1
Protons: 32 Thermal Expansion: 6.0 µm/(m·K)
Neutrons: 41 Electrical Resistivity: (20 °C) 1 Ω·m
Electron Configuration: Ar 3d10 4s2 4p2 2, 8, 18, 4 Electronegativity: 2.01 (Pauling scale)
Atomic Radius: 122 pm Tensile Strength: N/A
Covalent Radius: 122 pm Molar Heat Capacity: 23.222 J·mol−1·K−1
Van der Waals radius: 211 pm Young's Modulus: 103 GPa
Oxidation States: 4, 3, 2, 1, 0, -1, -2, -3, -4 Shear Modulus: 41 GPa
Phase: Solid Bulk Modulus: 75 GPa
Crystal Structure: diamond cubic Poisson Ratio: 0.26
Magnetic Ordering: Diamagnetic[ Mohs Hardness: 6.0
1st Ionization Energy: 762.18 kJ mol-1 Vickers Hardness: N/A
2nd Ionization Energy: 1537.47 kJ mol-1 Brinell Hardness: N/A
3rd Ionization Energy: 3302.15 kJ mol-1 Speed of Sound: (20 °C) 5400 m·s−1
       
IDENTIFIERS   MISCELLANEOUS  
CAS Number: 7440-56-4 Abundance in typical human body, by weight: N/A
ChemSpider ID: 4885606 Abundance in typical human body, by atom: N/A
PubChem CID: 6326954 Abundance in universe, by weight: 200 ppb
MDL Number: MFCD00085310 Abundance in universe, by atom: 3 ppb
EC Number: 231-164-3 Discovered By: Clemens Winkler
Beilstein Number: N/A Discovery Date: 1886
SMILES Identifier: [Ge]  
InChI Identifier: InChI=1S/Ge Other Names: N/A
InChI Key: GNPVGFCGXDBREM-UHFFFAOYSA-N  
       
       
       
       
       

Germanium Products


Metal Forms  •  Compounds  •  Alloys  •  Oxide Forms  •  Organometallic Compounds
Sputtering Targets  •  Nanomaterials  •  Semiconductor Materials



Recent Research & Development for Germanium

  • Electroluminescence emission of crystalline germanium nanoclusters deposited with laser assistance at low temperature. Lee HY, Lee CT, Tsai TC. J Nanosci Nanotechnol. 2014.
  • Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Lee JH, Lee EK, Joo WJ, Jang Y, Kim BS, Lim JY, Choi SH, Ahn SJ, Ahn JR, Park MH, Yang CW, Choi BL, Hwang SW, Whang D. Science. 2014
  • Determination of bis-carboxyethyl germanium sesquioxide by gas chromatography with microwave-induced plasma-atomic emission detection after derivatization with alkyl chloroformates. Trikas E, Zachariadis GA, Rosenberg E. Anal Bioanal Chem. 2014
  • Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys. Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D. ACS Nano. 2014
  • Neutral Compounds with Xenon-Germanium Bonds: A Theoretical Investigation on FXeGeF and FXeGeF(3.) Borocci S, Giordani M, Grandinetti F. J Phys Chem A. 2014
  • Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. Li W, Yang Z, Cheng J, Zhong X, Gu L, Yu Y. Nanoscale. 2014
  • Reliability enhancement of germanium nanowires using graphene as a protective layer: aspect of thermal stability. Lee JH, Choi SH, Patole SP, Jang Y, Heo K, Joo WJ, Yoo JB, Hwang SW, Whang D. ACS Appl Mater Interfaces. 2014
  • Direct observation of metal-insulator transition in single-crystalline germanium telluride nanowire memory devices prior to amorphization. Nukala P, Agarwal R, Qian X, Jang MH, Dhara S, Kumar K, Johnson AT, Li J, Agarwal R. Nano Lett. 2014
  • New oligogermane with a five coordinate germanium atom: the preparation of 1-germylgermatrane. Zaitsev KV, Churakov AV, Poleshchuk OKh, Oprunenko YF, Zaitseva GS, Karlov SS. Dalton Trans. 2014
  • Dietary germanium biotite supplementation enhances induction of the antibody responses by FMDV vaccine in pigs. Lee JA, Jung BG, Jung M, Kim TH, Yoo HS, Lee BJ. J Vet Sci. 2014.
  • Empty versus filled polyhedra: 11 vertex bare germanium clusters. Uţă MM, King RB. J Mol Model. 2014.
  • Layered germanium tin antimony tellurides: element distribution, nanostructures and thermoelectric properties. Welzmiller S, Rosenthal T, Ganter P, Neudert L, Fahrnbauer F, Urban P, Stiewe C, de Boor J, Oeckler O. Dalton Trans. 2014
  • Colloidal tin-germanium nanorods and their li-ion storage properties. Bodnarchuk MI, Kravchyk KV, Krumeich F, Wang S, Kovalenko MV. ACS Nano. 2014
  • A functionalized Ge3-compound with a dual character of the central germanium atom. Li Y, Mondal KC, Lübben J, Zhu H, Dittrich B, Purushothaman I, Parameswaran P, Roesky HW. Chem Commun (Camb). 2014
  • A Single-Step Reaction for Silicon and Germanium Nanorods. Lu X, Korgel BA. Chemistry. 2014.
  • Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis. Wang L, RoÅŸca SC, Poirier V, Sinbandhit S, Dorcet V, Roisnel T, Carpentier JF, Sarazin Y. Dalton Trans. 2014.
  • Halometallate Complexes of Germanium(II) and (IV): Probing the Role of Cation, Oxidation State and Halide on the Structural and Electrochemical Properties. Bartlett PN, Cummings CY, Levason W, Pugh D, Reid G. Chemistry. 2014.
  • Direct Observation of Metal-Insulator Transition in Single-Crystalline Germanium Telluride Nanowire Memory Devices Prior to Amorphization. Nukala P, Agarwal R, Qian X, Jang MH, Dhara S, Kumar K, Johnson AT, Li J, Agarwal R. Nano Lett. 2014.
  • New oligogermane with a five coordinate germanium atom: the preparation of 1-germylgermatrane. Zaitsev KV, Churakov AV, Poleshchuk OK, Oprunenko YF, Zaitseva GS, Karlov SS. Dalton Trans. 2014.
  • Strained-Germanium Nanostructures for Infrared Photonics. Boztug C, Sánchez-Pérez JR, Cavallo F, Lagally MG, Paiella R. ACS Nano. 2014.

Germanium Isotopes


Germanium (Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge.

Nuclide Symbol Isotopic Mass Half-Life Nuclear Spin
70Ge 69.9242474 Stable 0+
72Ge 71.9220758 Stable 0+
73Ge 72.9234589 Stable 9/2+
74Ge 73.9211778 Stable 0+
76Ge 70.9247013 1.78(8)×1021 a 0+