Skip to Main Content

About Fluorides

Fluoride IonThe fluoride ion is the anion of fluorine, F-, and fluorides are compounds which contain this anion. Metallic mono-, di, and trifluorides usually exhibit ionic bonding, pentafluorides and higher exhibit covalent bonding, and tetrafluorides contain bonds with intermediate properties. Ionic-bonded fluorides may be soluble or insoluble: alkali fluorides are soluble, alkali earth metals form insoluble fluorides, transition metal difluorides are often soluble, and trifluorides are insoluble. An exception to some of these trends is beryllium difluoride, which features bonds with partially covalent character and the crystalline structure of a covalently bonded network solid, yet is soluble in water.

Covalently metal-bonded fluorides are typically either gases or volatile liquids or solids, and act chemically as oxidants and fluoridating agents. Tungsten hexafluoride is used routinely to deposit tungsten using chemical vapor deposition methods in semiconductor device fabrication. Uranium hexafluoride is of vital importance to the enrichment processed used to produce nuclear reactor fuels and material for nuclear weapons. Non-metal fluorides also exist, and all are volatile compounds, but their chemical properties vary widely. A number of important superacids contain fluorine, and are typically produced by mixing hydrogen fluoride, itself a highly reactive acid, with a metal fluoride.

Fluoride Products

American Elements manufactures multiple forms of fluorides compounds including solutions, nanopowders, submicron, and -325 mesh powders, and high surface area materials with particle distribution and particle size controlled and certified. We also produce larger -40 mesh, -100 mesh, -200 mesh range sizes and <0.5 mm, 2 mm, 5 mm and other sizes of shot, granules, lump, flake and pieces. Purities include 99%, 99.9%, 99.99%, 99.999% and 99.9999% (2N, 3N, 4N, 5N and 6N).

American Elements maintains industrial scale production for all its fluorides products and will execute Non-Disclosure or Confidentiality Agreements to protect customer know-how.

Recent Research & Development for Fluorides

  • Fluoride-Induced Reduction of Ag(I) Leading to Formation of Silver Mirrors and Luminescent Ag-Nanoparticles. Krishnendu Maity, Dillip Kumar Panda, Eric Lochner, and Sourav Saha. J. Am. Chem. Soc.: February 11, 2015
  • On the Role of Fluoride in Accelerating the Reactions of Dialkylstannylene Acetals. Simiao Lu, Russell Jaye Boyd, and T. Bruce Grindley. J. Org. Chem.: February 10, 2015
  • Trivalent Cation-Controlled Phase Space of New U(IV) Fluorides, Na3MU6F30 (M = Al3+, Ga3+, Ti3+, V3+, Cr3+, Fe3+): Mild Hydrothermal Synthesis Including an in Situ Reduction Step, Structures, Optical, and Magnetic Properties. Jeongho Yeon, Mark D. Smith, Gregory Morrison, and Hans-Conrad zur Loye. Inorg. Chem.: February 5, 2015
  • Imaging the Effects of Annealing on the Polymorphic Phases of Poly(vinylidene fluoride). Chelsea M. Hess, Angela R Rudolph, and Philip J. Reid. J. Phys. Chem. B: February 5, 2015
  • Using Cellulose Nanocrystals as a Sustainable Additive to Enhance Hydrophility, Mechanical and Thermal Properties of Poly (vinylidiene fluoride)/Poly (methyl methacrylate) Blend. Zhen Zhang, Qinglin Wu, Kunlin Song, Suxia Ren, Tingzhou Lei, and Quanguo Zhang. ACS Sustainable Chem. Eng.: January 29, 2015
  • Measurement of Internal Substrate Binding in Dehaloperoxidase–Hemoglobin by Competition with the Heme–Fluoride Binding Equilibrium. Jing Zhao, Justin Moretto, Peter Le, and Stefan Franzen. J. Phys. Chem. B: January 22, 2015
  • Atomic Layer Etching of Al2O3 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)2 and Hydrogen Fluoride. Younghee Lee and Steven M. George. ACS Nano: January 20, 2015
  • Rational Targeting of Active-Site Tyrosine Residues Using Sulfonyl Fluoride Probes. Erik C. Hett, Hua Xu, Kieran F. Geoghegan, Ariamala Gopalsamy, Robert E. Kyne, Jr., Carol A. Menard, Arjun Narayanan, Mihir D. Parikh, Shenping Liu, Lee Roberts, Ralph P. Robinson, Michael A. Tones, and Lyn H. Jones. ACS Chem. Biol.: 42013
  • Fluoride Complexes of Cyclometalated Iridium(III). Ayan Maity, Robert J. Stanek, Bryce L. Anderson, Matthias Zeller, Allen D. Hunter, Curtis E. Moore, Arnold L. Rheingold, and Thomas G. Gray. Organometallics: December 29, 2014
  • Nature of the Chemical Bond and Origin of the Inverted Dipole Moment in Boron Fluoride: A Generalized Valence Bond Approach. Felipe Fantuzzi, Thiago Messias Cardozo, and Marco Antonio Chaer Nascimento. J. Phys. Chem. A: December 22, 2014