Potassium Nitrate Solution

CAS 7757-79-1

Product Product Code Order or Specifications
(2N) 99% Potassium Nitrate Solution K-NAT-02-SOL Contact American Elements
(3N) 99.9% Potassium Nitrate Solution K-NAT-03-SOL Contact American Elements
(4N) 99.99% Potassium Nitrate Solution K-NAT-04-SOL Contact American Elements
(5N) 99.999% Potassium Nitrate Solution K-NAT-05-SOL Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
KNO3 7757-79-1 24878578 24434 MFCD00011409 231-818-8 N/A N/A [K+].[O-][N+]([O-])=O InChI=1S/K.NO3/c;2-1(3)4/q+1;-1 FGIUAXJPYTZDNR-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
KNO3 101.11 White to clear liquid N/A 100.952 g/mol 100.951523 Da 0 Safety Data Sheet

Nitrate IonPotassium Nitrate Solutions are moderate to highly concentrated liquid solutions of Potassium Nitrate. They are an excellent source of Potassium Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Potassium Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr ModelAs with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word 'qali,' which means alkali. The symbol K originates from the Latin word 'kalium'. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium Information Center.

UN 1486 5.1/PG 3
Flame Over Circle-Oxidizing gases and liquids        


Potassium 2 - Ethylhexanoate Potassium Oxide Potassium Chloride Potassium Acetate Potassium Wire
Potassium Nitrate Potassium Metal Potassium Oxide Pellets Potassium Sodium Alloy Potassium Sputtering Target
Potassium Oxide Nanopowder Potassium Oxide Powder Potassium Foil Silver Potassium Cyanide Potassium Pellets
Show Me MORE Forms of Potassium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Potassium

  • Dragoslav Ilić, Verica V. Jevtić, Miorad M. Vasojević, Miodrag Ž. Jelić, Ivana D. Radojević, Ljiljana R. Čomić, Slađana B. Novaković, Goran A. Bogdanović, Ivan Potočňák, Srećko R. Trifunović, Stereospecific ligands and their complexes. Part XXI. Synthesis, characterization, circular dichroism and antimicrobial activity of cobalt(III) complexes with some edda-type of ligands. Crystal structure of potassium-Δ-(−)589-s-cis-oxalato-(S,S)-ethylenediamine-N,N′-di-(2-propanoato)-cobaltate(III)-semihydrate, K-Δ-(−)589-s-cis-[Co(S,S-eddp)(ox)]·0.5H2O, Polyhedron, Volume 85, 8 January 2015
  • T. Palacios, J. Reiser, J. Hoffmann, M. Rieth, A. Hoffmann, J.Y. Pastor, Microstructural and mechanical characterization of annealed tungsten (W) and potassium-doped tungsten foils, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Prasanna Padigi, Gary Goncher, David Evans, Raj Solanki, Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • V.G. Goffman, A.V. Gorokhovsky, M.M. Kompan, E.V. Tretyachenko, O.S. Telegina, A.V. Kovnev, F.S. Fedorov, Electrical properties of the potassium polytitanate compacts, Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Elena Yazhenskikh, Tatjana Jantzen, Klaus Hack, Michael Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica, Calphad, Volume 47, December 2014
  • Nicolay Yu. Adonin, Anton Yu. Shabalin, Vadim V. Bardin, Hydrodeboration of potassium polyfluoroaryl(fluoro)borates with alcohols, Journal of Fluorine Chemistry, Volume 168, December 2014
  • C. Balbuena, M.A. Frechero, R.A. Montani, Channel diffusion in a lithium–potassium metasilicate glass using the isoconfigurational ensemble: Towards a scenario for the mixed alkali effect, Journal of Non-Crystalline Solids, Volume 405, 1 December 2014

Recent Research & Development for Nitrates

  • Teresa S. Ortner, Klaus Wurst, Lukas Perfler, Martina Tribus, Hubert Huppertz, Hydrothermal synthesis and characterization of the first mixed alkali borate-nitrate K3Na[B6O9(OH)3]NO3, Journal of Solid State Chemistry, Volume 221, January 2015
  • A.G. Fernández, S. Ushak, H. Galleguillos, F.J. Pérez, Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants, Solar Energy Materials and Solar Cells, Volume 132, January 2015
  • Ying Wang, Jia Yang, Wenliang Gao, Rihong Cong, Tao Yang, Organic-free hydrothermal synthesis of chalcopyrite CuInS2 and its photocatalytic activity for nitrate ions reduction, Materials Letters, Volume 137, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Baogang Zhang, Ye Liu, Shuang Tong, Maosheng Zheng, Yinxin Zhao, Caixing Tian, Hengyuan Liu, Chuanping Feng, Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Jinghuan Luo, Guangyu Song, Jianyong Liu, Guangren Qian, Zhi Ping Xu, Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • Dajana Japić, Marko Bitenc, Marjan Marinšek, Zorica Crnjak Orel, The impact of nano-milling on porous ZnO prepared from layered zinc hydroxide nitrate and zinc hydroxide carbonate, Materials Research Bulletin, Volume 60, December 2014
  • Xu Wang, Dahai Pan, Qian Xu, Min He, Shuwei Chen, Feng Yu, Ruifeng Li, Synthesis of ordered mesoporous alumina with high thermal stability using aluminum nitrate as precursor, Materials Letters, Volume 135, 15 November 2014
  • Javad Baneshi, Mohammad Haghighi, Naeimeh Jodeiri, Mozaffar Abdollahifar, Hossein Ajamein, Urea–nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Ian Y.Y. Bu, Sol–gel production of aluminium doped zinc oxide using aluminium nitrate, Materials Science in Semiconductor Processing, Volume 27, November 2014