Potassium Nitrate Solution

KNO 3
CAS 7757-79-1


Product Product Code Order or Specifications
(2N) 99% Potassium Nitrate Solution K-NAT-02-SOL Contact American Elements
(3N) 99.9% Potassium Nitrate Solution K-NAT-03-SOL Contact American Elements
(4N) 99.99% Potassium Nitrate Solution K-NAT-04-SOL Contact American Elements
(5N) 99.999% Potassium Nitrate Solution K-NAT-05-SOL Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
KNO3 7757-79-1 24878578 24434 MFCD00011409 231-818-8 N/A N/A [K+].[O-][N+]([O-])=O InChI=1S/K.NO3/c;2-1(3)4/q+1;-1 FGIUAXJPYTZDNR-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
KNO3 101.11 White to clear liquid N/A 100.952 g/mol 100.951523 Da 0 Safety Data Sheet

Nitrate IonPotassium Nitrate Solutions are moderate to highly concentrated liquid solutions of Potassium Nitrate. They are an excellent source of Potassium Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Potassium Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr ModelAs with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word 'qali,' which means alkali. The symbol K originates from the Latin word 'kalium'. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H272
0
8
N/A
TT3700000
UN 1486 5.1/PG 3
1
Flame Over Circle-Oxidizing gases and liquids        

POTASSIUM NITRATE SYNONYMS
Saltpeter

CUSTOMERS FOR POTASSIUM NITRATE SOLUTION HAVE ALSO LOOKED AT
Potassium 2 - Ethylhexanoate Potassium Oxide Potassium Chloride Potassium Acetate Potassium Wire
Potassium Nitrate Potassium Metal Potassium Oxide Pellets Potassium Sodium Alloy Potassium Sputtering Target
Potassium Oxide Nanopowder Potassium Oxide Powder Potassium Foil Silver Potassium Cyanide Potassium Pellets
Show Me MORE Forms of Potassium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Potassium

  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Kaiyou Zhang, Hong Chen, Xue Wang, Donglin Guo, Chenguo Hu, Shuxia Wang, Junliang Sun, Qiang Leng, Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application, Journal of Power Sources, Volume 268, 5 December 2014
  • Elena Yazhenskikh, Tatjana Jantzen, Klaus Hack, Michael Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags: Potassium oxide–magnesium oxide–silica, Calphad, Volume 47, December 2014
  • Qingxin Meng, Xiangda Meng, Huishun Chen, Zhongxiang Zhou, Changes in the electroholographic properties of a paraelectric potassium lithium tantalate niobate crystal by electrostriction, Optics Communications, Volume 331, 15 November 2014
  • Xiaojing Cheng, Jiagang Wu, Ting Zheng, Xiaopeng Wang, Binyu Zhang, Dingquan Xiao, Jianguo Zhu, Xiangjian Wang, Xiaojie Lou, Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Tangyuan Li, Huiqing Fan, Changbai Long, Guangzhi Dong, Sheji Sun, Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates, Journal of Alloys and Compounds, Volume 609, 5 October 2014
  • Caijun Shi, Jianming Yang, Nan Yang, Yuan Chang, Effect of waterglass on water stability of potassium magnesium phosphate cement paste, Cement and Concrete Composites, Volume 53, October 2014
  • F. Askari, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, Mechanistic approach for evaluation of the corrosion inhibition of potassium zinc phosphate pigment on the steel surface: Application of surface analysis and electrochemical techniques, Dyes and Pigments, Volume 109, October 2014
  • Yawen Wang, Fangfang Duo, Shiqi Peng, Falong Jia, Caimei Fan, Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility, Journal of Colloid and Interface Science, Volume 430, 15 September 2014
  • Il Seok Chae, Miso Kim, Yong Soo Kang, Sang Wook Kang, Enhanced CO2 carrier activity of potassium cation with fluorosilicate anions for facilitated transport membranes, Journal of Membrane Science, Volume 466, 15 September 2014
  • Takuya Wada, Takuya Yasutake, Akira Nakasuga, Taro Kinumoto, Tomoki Tumura, Masahiro Toyoda, Preparation of few-layer graphene by the hydroxylation of a potassium–graphite intercalation compound, Carbon, Volume 76, September 2014
  • Wenjuan Wu, Jing Li, Dingquan Xiao, Min Chen, Yingchun Ding, Chuanqi Liu, Defect dipoles-driven ferroelectric behavior in potassium sodium niobate ceramics, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Yongshan Tan, Hongfa Yu, Ying Li, Chengyou Wu, Jinmei Dong, Jing Wen, Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Xiaoxin Zhang, Qingzhi Yan, Shaoting Lang, Min Xia, Changchun Ge, Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • J.X. Liao, X.B. Wei, Z.Q. Xu, P. Wang, Effect of potassium-doped concentration on structures and dielectric performance of barium-strontium-titanate films, Vacuum, Volume 107, September 2014
  • Chung-Yul Yoo, Si Young Jang, Jong Hoon Joo, Ji Haeng Yu, Jong-Nam Kim, Soft chemical synthesis and the role of potassium pentahydrogen bis(phosphate) in a proton conducting composite electrolyte based on potassium dihydrogen phosphate, Journal of Power Sources, Volume 260, 15 August 2014
  • Justyna L. Kowal, Julia K. Kowal, Dalin Wu, Henning Stahlberg, Cornelia G. Palivan, Wolfgang P. Meier, Functional surface engineering by nucleotide-modulated potassium channel insertion into polymer membranes attached to solid supports, Biomaterials, Volume 35, Issue 26, August 2014
  • Rajan Singh, Pankaj K. Patro, A.R. Kulkarni, C.S. Harendranath, Synthesis of nano-crystalline potassium sodium niobate ceramic using mechanochemical activation, Ceramics International, Volume 40, Issue 7, Part B, August 2014
  • Nikolas T. Weissmueller, Heiko A. Schiffter, Andrew J. Pollard, A. Cuneyt Tas, Molten salt synthesis of potassium-containing hydroxyapatite microparticles used as protein substrate, Materials Letters, Volume 128, 1 August 2014

Recent Research & Development for Nitrates

  • Baogang Zhang, Ye Liu, Shuang Tong, Maosheng Zheng, Yinxin Zhao, Caixing Tian, Hengyuan Liu, Chuanping Feng, Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Ian Y.Y. Bu, Sol–gel production of aluminium doped zinc oxide using aluminium nitrate, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • N. Sivakumar, V. Jaisankar, G. Chakkaravarthi, G. Anbalagan, Synthesis, crystal structure, optical, thermal and mechanical characterization of poly bis(thiourea) silver(I) nitrate single crystals synthesized at room temperature, Materials Letters, Volume 132, 1 October 2014
  • Raka Mukherjee, Sirshendu De, Adsorptive removal of nitrate from aqueous solution by polyacrylonitrile–alumina nanoparticle mixed matrix hollow-fiber membrane, Journal of Membrane Science, Volume 466, 15 September 2014
  • Mircea Niculescu, Ionuţ Ledeţi, Mihail Bîrzescu, New methods to obtain carboxylic acids by oxidation reactions of 1,2-ethanediol with metallic nitrates, Journal of Organometallic Chemistry, Volume 767, 15 September 2014
  • Bikshandarkoil R. Srinivasan, Comments on the paper: ‘Studies on structural, thermal and optical properties of novel NLO crystal bis l-glutamine sodium nitrate’, Materials Letters, Volume 131, 15 September 2014
  • Redrothu Hanumantharao, S. Kalainathan, Reply to “Comments on the paper: Studies on structural, thermal and optical properties of novel NLO crystal bis l-glutamine sodium nitrate”, Materials Letters, Volume 131, 15 September 2014
  • N. Hosseini, F. Karimzadeh, M.H. Abbasi, G.M. Choi, Microstructural characterization and electrical conductivity of CuxMn3−xO4 (0.9≤x≤1.3) spinels produced by optimized glycine–nitrate combustion and mechanical milling processes, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • J.L. Camas-Anzueto, A.E. Aguilar-Castillejos, J.H. Castañón-González, M.C. Lujpán-Hidalgo, H.R. Hernández de León, R. Mota Grajales, Fiber sensor based on Lophine sensitive layer for nitrate detection in drinking water, Optics and Lasers in Engineering, Volume 60, September 2014
  • Lina Shi, Jianhua Du, Zuliang Chen, Mallavarapu Megharaj, Ravendra Naidu, Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater, Journal of Colloid and Interface Science, Volume 428, 15 August 2014