Magnesium Grain

High Purity Mg Grains
CAS 7439-95-4


Product Product Code Order or Specifications
(2N) 99% Magnesium Grains MG-M-02-GRNS Contact American Elements
(3N) 99.9% Magnesium Grains MG-M-03-GRNS Contact American Elements
(4N) 99.99% Magnesium Grains MG-M-04-GRNS Contact American Elements
(5N) 99.999% Magnesium Grains MG-M-05-GRNS Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Mg 7439-95-4 24855356 5462224 MFCD00085308 231-104-6 4948473 [Mg] InChI=1S/Mg FYYHWMGAXLPEAU-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
24.31 Gray 1738 kg/m³ N/A 650 °C 1090 °C 1.56 W/cm/K @ 298.2 K 4.45 microhm-cm @ 20°C 1.2 Paulings 0.243 Cal/g/K @ 25°C 32.517 K-Cal/gm atom at 1090°C 2.16 Cal/gm mole Safety Data Sheet

Magnesium GrainGrain dimensions fall between those of pellets (particles from about 2 mm up to 64 mm) and powder (particles around 0.0625 mm down to 0.004 mm). Grains with small particle size are more cohesive and more easily suspended in a gas. American Elements specializes in producing high purity Magnesium Grains with the smallest possible average grain sizes for use in preparation of pressed and bonded sputtering targets and in Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Magnesium grains may range from small, fine particles to larger, coarse particles. Grains are also useful in any application where high surface areas are desired such as water treatment and in fuel cell and solar applications. Nanoparticles (See also Nanotechnology Information and Quantum Dots) also produce very high surface areas. Our standard Grain particle sizes average in the range of - 325 mesh, - 100 mesh, 10-50 microns and submicron (< 1 micron). We can also provide many materials in the nanoscale range. See research below. We also produce Magnesium as rod, ingot, pieces, pellets, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request. Grains are useful in any application where high surface areas are desired such as water treatment and electronics applications.

Magnesium Bohr ModelMagnesium (Mg) atomic and molecular weight, atomic number and elemental symbolMagnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia. For more information on magnesium, including properties, safety data, research, and American Elements' catalog of magnesium products, visit the Magnesium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H250-H260
F
11-15
43-7/8
OM2100000
UN 1869 4.1/PG 3
nwg
Flame-Flammables        

CUSTOMERS FOR MAGNESIUM GRAINS HAVE ALSO LOOKED AT
Magnesium Sputtering Target Magnesium Acetate Magnesium Oxide Magnesium Nanoparticles Magnesium Powder
Magnesium Metal Magnesium Chloride Magnesium Iodide Magnesium Wire Magnesium Oxide Pellets
Magnesium Nitrate Magnesium Selenide Magnesium Foil Magnesium Acetylacetonate Magnesium Pellets
Show Me MORE Forms of Magnesium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Magnesium

  • Masoud Harooni, Junjie Ma, Blair Carlson, Radovan Kovacevic, Two-pass laser welding of AZ31B magnesium alloy, Journal of Materials Processing Technology, Volume 216, February 2015
  • Xiaomin Yuan, Shouqiang Huang, Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering, Journal of Alloys and Compounds, Volume 620, 25 January 2015
  • Lei Yang, Xiaorong Zhou, Song-Mao Liang, Rainer Schmid-Fetzer, Zhongyun Fan, Geoff Scamans, Joseph Robson, George Thompson, Effect of traces of silicon on the formation of Fe-rich particles in pure magnesium and the corrosion susceptibility of magnesium, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Yahia Ali, Dong Qiu, Bin Jiang, Fusheng Pan, Ming-Xing Zhang, Current research progress in grain refinement of cast magnesium alloys: A review article, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • A. Rosová, I. Hušek, P. Kováč, E. Dobročka, T. Melišek, Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion process, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Qiao Liu, Zhiqiang Guo, Hongfei Han, Hongbo Tong, Xuehong Wei, Lithium, magnesium, zinc complexes supported by tridentate pincer type pyrrolyl ligands: Synthesis, crystal structures and catalytic activities for the cyclotrimerization of isocyanates, Polyhedron, Volume 85, 8 January 2015
  • S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer, Mechanisms for enhanced plasticity in magnesium alloys, Acta Materialia, Volume 82, 1 January 2015
  • P. Carlone, G.S. Palazzo, Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy, Journal of Materials Processing Technology, Volume 215, January 2015
  • Weiqin Tang, Shiyao Huang, Dayong Li, Yinghong Peng, Mechanical anisotropy and deep drawing behaviors of AZ31 magnesium alloy sheets produced by unidirectional and cross rolling, Journal of Materials Processing Technology, Volume 215, January 2015
  • Ju-Sik Kim, Won-Seok Chang, Ryoung-Hee Kim, Dong-Young Kim, Dong-Wook Han, Kyu-Hyoung Lee, Seok-Soo Lee, Seok-Gwang Doo, High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries, Journal of Power Sources, Volume 273, 1 January 2015