Sodium Silicide

CAS 12164-12-4

Product Product Code Order or Specifications
(5N) 99.999% Sodium Silicide Powder NA-SID-05-P Contact American Elements
(5N) 99.999% Sodium Silicide Ingot NA-SID-05-I Contact American Elements
(5N) 99.999% Sodium Silicide Chunk NA-SID-05-CK Contact American Elements
(5N) 99.999% Sodium Silicide Sputtering Target NA-SID-05-ST Contact American Elements
(5N) 99.999% Sodium Silicide Lump NA-SID-05-L Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
NaSi 12164-12-4 32991976 20059387 N/A N/A sodium; silicon(1-) N/A [Na+].[Si-] InChI=1S/Na.

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
NaSi 51.08 Black-gray crystalline powder N/A N/A 1.7 50.966696 50.966696 0 Safety Data Sheet

Silicide IonSodium Silicide is a water insoluble Silicon source for use in oxygen-sensitive applications, such as metal production. Certain fluoride compounds can be produced at nanoscale and in ultra high purity forms. Sodium Silicide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Sodium Bohr ModelSodium (Na) atomic and molecular weight, atomic number and elemental symbolSodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with na atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1.The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word "suda," meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from "natrium," its Latin name. For more information on sodium, including properties, safety data, research, and American Elements' catalog of sodium products, visit the Sodium Information Center.

Silicon (Si) atomic and molecular weight, atomic number and elemental symbolSilicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy Ferrosilicon.Elemental Silicon Silica (or silicon oxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word "silex" which means flint or hard stone. For more information on silicon, including properties, safety data, research, and American Elements' catalog of silicon products, visit the Silicon Information Center.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information UN 2813 4.3/PG I
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Sodium Fluoride Sodium Chloride Sodium Oxide Sputtering Target Sodium Sulfate Sodium Oxide Powder
Sodium Nitrate Sodium Acetate Sodium 2 - Ethylhexanoate Sodium Tungstate Sodium Oxide
Sodium Oxide Nanopowder Sodium Oxide Pellets Sodium Cubes Gold(I) Sodium Cyanide Sodium Benzoate
Show Me MORE Forms of Sodium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Sodium

  • Enshan Han, Qiming Jing, Lingzhi Zhu, Guowei Zhang, Shuqian Ma, The effects of sodium additive on Li1.17Ni0.10Co0.10Mn0.63O2 for lithium ion batteries, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Yuchao Li, Jianguo Tang, Linjun Huang, Yao Wang, Jixian Liu, Xiangcai Ge, Sie Chin Tjong, Robert Kwok Yiu Li, Laurence A. Belfiore, Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly(sodium 4-styrenesulfonate), Composites Part A: Applied Science and Manufacturing, Volume 68, January 2015
  • M. Afshari, M. Moradi, M. Rostami, Structural, electronic and magnetic properties of the (001), (110) and (111) surfaces of rocksalt sodium sulfide: A first-principles study, Journal of Physics and Chemistry of Solids, Volume 76, January 2015
  • Lucille Bodenes, Ali Darwiche, Laure Monconduit, Hervé Martinez, The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, Journal of Power Sources, Volume 273, 1 January 2015
  • Gurpreet Singh, Frederic Aguesse, Laida Otaegui, Eider Goikolea, Elena Gonzalo, Julie Segalini, Teofilo Rojo, Electrochemical performance of NaFex(Ni0.5Ti0.5)1−xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery, Journal of Power Sources, Volume 273, 1 January 2015
  • E.J.C. Davim, M.H.V. Fernandes, A.M.R. Senos, Increased surface area during sintering of calcium phosphate glass and sodium chloride mixtures, Journal of the European Ceramic Society, Volume 35, Issue 1, January 2015
  • Saeideh Hematian, Faramarz Hormozi, Drying kinetics of coated sodium percarbonate particles in a conical fluidized bed dryer, Powder Technology, Volume 269, January 2015
  • J. Suresh Kumar, K. Pavani, M.P.F. Graça, M.J. Soares, Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Xuebin Qiao, Yu Cheng, Lin Qin, Chuanxiang Qin, Peiqing Cai, Sun Il Kim, Hyo Jin Seo, Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Kaiqiang Wu, Jie Shu, Xiaoting Lin, Lianyi Shao, Mengmeng Lao, Miao Shui, Peng Li, Nengbing Long, Dongjie Wang, Enhanced electrochemical performance of sodium lithium titanate by coating various carbons, Journal of Power Sources, Volume 272, 25 December 2014

Recent Research & Development for Silicides

  • M. Saleemi, A. Famengo, S. Fiameni, S. Boldrini, S. Battiston, M. Johnsson, M. Muhammed, M.S. Toprak, Thermoelectric performance of higher manganese silicide nanocomposites, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Guillaume Bernard-Granger, Mathieu Soulier, Hilaire Ihou-Mouko, Christelle Navone, Mathieu Boidot, Jean Leforestier, Julia Simon, Microstructure investigations and thermoelectrical properties of a P-type polycrystalline higher manganese silicide material sintered from a gas-phase atomized powder, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • M.J. Prest, J.S. Richardson-Bullock, Q.T. Zhao, J.T. Muhonen, D. Gunnarsson, M. Prunnila, V.A. Shah, T.E. Whall, E.H.C. Parker, D.R. Leadley, Superconducting platinum silicide for electron cooling in silicon, Solid-State Electronics, Volume 103, January 2015
  • Gordon A. Alanko, Brian Jaques, Allyssa Bateman, Darryl P. Butt, Mechanochemical synthesis and spark plasma sintering of the cerium silicides, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Hiroyuki Usui, Kazuma Nouno, Yuya Takemoto, Kengo Nakada, Akira Ishii, Hiroki Sakaguchi, Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites, Journal of Power Sources, Volume 268, 5 December 2014
  • D.O. Poletaev, A.G. Lipnitskii, A.I. Kartamyshev, D.A. Aksyonov, E.S. Tkachev, S.S. Manokhin, M.B. Ivanov, Yu. R. Kolobov, Ab initio-based prediction and TEM study of silicide precipitation in titanium, Computational Materials Science, Volume 95, December 2014
  • P. Tsakiropoulos, On the macrosegregation of silicon in niobium silicide based alloys, Intermetallics, Volume 55, December 2014
  • Toshihiro Yamazaki, Yuichiro Koizumi, Koretaka Yuge, Akihiko Chiba, Koji Hagihara, Takayoshi Nakano, Kyosuke Kishida, Haruyuki Inui, Mechanisms of Cr segregation to C11b/C40 lamellar interface in (Mo,Nb)Si2 duplex silicide: A phase-field study to bridge experimental and first-principles investigations, Intermetallics, Volume 54, November 2014
  • Yeon Soo Kim, J.M. Park, K.H. Lee, B.O. Yoo, H.J. Ryu, B. Ye, In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al, Journal of Nuclear Materials, Volume 454, Issues 1–3, November 2014
  • Fang Yuan, Y. Mozharivskyj, A.V. Morozkin, A.V. Knotko, V.O. Yapaskurt, M. Pani, A. Provino, P. Manfrinetti, The Dy–Ni–Si system as a representative of the rare earth–Ni–Si family: Its isothermal section and new rare-earth nickel silicides, Journal of Solid State Chemistry, Volume 219, November 2014