Lead Oxalate

CAS 814-93-7

Product Product Code Order or Specifications
(2N) 99% Lead Oxalate PB-OXL-02 Contact American Elements
(3N) 99.9% Lead Oxalate PB-OXL-03 Contact American Elements
(4N) 99.99% Lead Oxalate PB-OXL-04 Contact American Elements
(5N) 99.999% Lead Oxalate PB-OXL-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
PbC2O4 814-93-7 197481 61218 N/A 212-413-5 lead(2+); oxalate N/A C(=O)(C(=O)[O-])[O-].[Pb+2] InChI=1S/C2H2O4.Pb/c3-1(4)2(5)6;/h(H,3,4)(H,5,6);/q;+2/p-2 FCHAMWMIYDDXFS-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C2O4Pb 295.219 White Powder 327.5 °C
(621.5 °F)
1740 °C
(3164 °F)
11.336 g/cm3 295.956 295.956 0 Safety Data Sheet

Oxalate IonLead Oxalate is highly insoluble in water and converts to the oxide when heated (calcined). Lead Oxalate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Lead Bohr Model Lead (Pb) atomic and molecular weight, atomic number and elemental symbolLead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental Lead Lead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrual materials. For more information on lead, including properties, safety data, research, and American Elements' catalog of lead products, visit the Lead Information Center.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Ethanedioic acid, lead(2+) salt (1:1)

Show Me MORE Forms of Lead

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Lead

  • Shasha Feng, Dingquan Xiao, Jiagang Wu, Min Xiao, Jianguo Zhu, Lead-free (K, Na)NbO3–Bi0.5K0.5ZrO3–BaZrO3 ternary system: Microstructure and electrical properties, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • L. Largitte, P. Lodewyckx, Modeling the influence of the operating conditions upon the sorption rate and the yield in the adsorption of lead(II), Microporous and Mesoporous Materials, Volume 202, 15 January 2015
  • Eric C.Y. Tam, Martyn P. Coles, J. David Smith, J. Robin Fulton, The steric influence of β-diketiminato ligands on the coordination chemistry of lead(II), Polyhedron, Volume 85, 8 January 2015
  • Hamza Lidjici, Brahim Lagoun, Mokhtar Berrahal, Mohamed Rguitti, Med Amine Hentatti, Hamadi Khemakhem, XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • K. Parmar, N.S. Negi, Influence of Na/Bi excess on structural, dielectric and multiferroic properties of lead free (Na0.5Bi0.5)0.99La0.01Ti0.988Fe0.012O3 ceramic, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Muhammed M. Vargonen, Modeling the impact of paste additives and pellet geometry on paste utilization within lead acid batteries during low rate discharges, Journal of Power Sources, Volume 273, 1 January 2015
  • L. Chen, F. Ma, X.Y. Zhanga, Y.Q. Ju, H.B. Zhang, H.L. Ge, J.G. Wang, B. Zhou, Y.Y. Li, X.W. Xu, P. Luo, L. Yang, Y.B. Zhang, J.Y. Li, J.K. Xu, T.J. Liang, S.L. Wang, Y.W. Yang, L. Gu, Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 342, 1 January 2015
  • Ma Zhi-Chao, Xu Zhi-Mou, Wu Xing-Hui, Luo Chun-Ya, Peng Jing, Investigation of broad spectrum absorption of Lead zirconate titanate grating, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Xiaoshi Lang, Dianlong Wang, Junsheng Zhu, Modified titanium foil's surface by high temperature carbon sintering method as the substrate for bipolar lead-acid battery, Journal of Power Sources, Volume 272, 25 December 2014
  • Wislei R. Osório, Ausdinir D. Bortolozo, Leandro C. Peixoto, Amauri Garcia, Mechanical performance and microstructure array of as-cast lead–silver and lead–bismuth alloys, Journal of Power Sources, Volume 271, 20 December 2014

Recent Research & Development for Oxalates

  • Ying Deng, Xiang Xiong, J.P. Zou, Ling Deng, M.J. Tu, Control of morphology and structure for β-Co nanoparticles from cobalt oxalate and research on its phase-change mechanism, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • A.F. Holdsworth, A.R. Horrocks, B.K. Kandola, D. Price, The potential of metal oxalates as novel flame retardants and synergists for engineering polymers, Polymer Degradation and Stability, Available online 20 September 2014
  • E. Amadio, L. Toniolo, Efficient oxidative carbonylation of iPrOH to oxalate catalyzed by Pd(II)–PPh3 complexes using benzoquinone as a stoichiometric oxidant, Journal of Organometallic Chemistry, Volume 767, 15 September 2014
  • A. Verganelaki, V. Kilikoglou, I. Karatasios, P. Maravelaki-Kalaitzaki, A biomimetic approach to strengthen and protect construction materials with a novel calcium-oxalate–silica nanocomposite, Construction and Building Materials, Volume 62, 15 July 2014
  • Michael L. Tarlton, Alexander E. Anderson, Michael P. Weberski Jr., Xavier Riart-Ferrer, Brandon M. Nelson, Craig C. McLauchlan, Synthesis, characterization, and electrochemical properties of μ-oxalate bridged vanadium(III) and (IV) dimers incorporating the Kläui ligand, CpPORCo (R = Me, Et), Inorganica Chimica Acta, Volume 420, 24 August 2014
  • Claudia Conti, Irene Aliatis, Marco Casati, Chiara Colombo, Mauro Matteini, Riccardo Negrotti, Marco Realini, Giuseppe Zerbi, Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates, Journal of Cultural Heritage, Volume 15, Issue 3, May–June 2014
  • A. Świtlicka-Olszewska, B. Machura, J. Mroziński, Synthesis, magnetic behavior and structural characterization of novel one-dimensional copper(II) coordination polymer based on azide and oxalate bridges, Inorganic Chemistry Communications, Volume 43, May 2014
  • Zukhra C. Kadirova, Ken-ichi Katsumata, Toshihiro Isobe, Nobuhiro Matsushita, Akira Nakajima, Kiyoshi Okada, Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution, Applied Surface Science, Volume 284, 1 November 2013
  • Tong Wu, Daibing Luo, Chunmei Duan, Zhonghua Shi, Yaoqiang Chen, Zhien Lin, From 1D chain to 2D layer and 3D network: Solvent-free syntheses of new metal oxalates, Inorganic Chemistry Communications, Volume 41, March 2014
  • Kangcai Wang, Yu Wang, Dingguo Xu, Daibing Luo, Zhien Lin, New lanthanide sulfate–oxalate hybrid solids containing different inorganic building blocks, Inorganic Chemistry Communications, Volume 36, October 2013