Lead Oxalate

PbC2O4
CAS 814-93-7

Product Product Code Order or Specifications
(2N) 99% Lead Oxalate PB-OXL-02 Contact American Elements
(3N) 99.9% Lead Oxalate PB-OXL-03 Contact American Elements
(4N) 99.99% Lead Oxalate PB-OXL-04 Contact American Elements
(5N) 99.999% Lead Oxalate PB-OXL-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
PbC2O4 814-93-7 197481 61218 N/A 212-413-5 lead(2+); oxalate N/A C(=O)(C(=O)[O-])[O-].[Pb+2] InChI=1S/C2H2O4.Pb/c3-1(4)2(5)6;/h(H,3,4)(H,5,6);/q;+2/p-2 FCHAMWMIYDDXFS-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
C2O4Pb 295.219 White Powder 327.5 °C
(621.5 °F)
1740 °C
(3164 °F)
11.336 g/cm3 295.956 295.956 0 Safety Data Sheet

Oxalate IonLead Oxalate is highly insoluble in water and converts to the oxide when heated (calcined). Lead Oxalate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Lead Bohr Model Lead (Pb) atomic and molecular weight, atomic number and elemental symbolLead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental Lead Lead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrual materials. For more information on lead, including properties, safety data, research, and American Elements' catalog of lead products, visit the Lead Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

LEAD OXALATE SYNONYMS
Ethanedioic acid, lead(2+) salt (1:1)

CUSTOMERS FOR LEAD OXALATE HAVE ALSO LOOKED AT
Show Me MORE Forms of Lead

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Lead

  • Baoxiang He, Hua Wang, Xie He, Vibration test methods and their experimental research on the performance of the lead-acid battery, Journal of Power Sources, Volume 268, 5 December 2014
  • Yue Li, Zheng Shen, Asok Ray, Christopher D. Rahn, Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach, Journal of Power Sources, Volume 268, 5 December 2014
  • Olawale L. Osifeko, Tebello Nyokong, Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water, Dyes and Pigments, Volume 111, December 2014
  • A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Properties enhancement of low Ag-content Sn–Ag–Cu lead-free solders containing small amount of Zn, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Xing Liu, Min Zhu, Zhihui Chen, Bijun Fang, Jianning Ding, Xiangyong Zhao, Haiqing Xu, Haosu Luo, Structure and electrical properties of Li-doped BaTiO3–CaTiO3–BaZrO3 lead-free ceramics prepared by citrate method, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Matthew Sorge, Thomas Bean, Travis Woodland, John Canning, I. Frank Cheng, Dean B. Edwards, Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates, Journal of Power Sources, Volume 266, 15 November 2014
  • Pengran Gao, Yi Liu, Weixin Lv, Rui Zhang, Wei Liu, Xianfu Bu, Guanghua Li, Lixu Lei, Methanothermal reduction of mixtures of PbSO4 and PbO2 to synthesize ultrafine a-PbO powders for lead acid batteries, Journal of Power Sources, Volume 265, 1 November 2014
  • M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, Enhanced dielectric and ferroelectric properties of lead-free Ba(Zr0.15Ti0.85)O3 ceramics compacted by cold isostatic pressing, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • Yuanyu Wang, Qilong Zhang, New K0.48Na0.52NbO3–Bi(Zn0.5Zr0.5)O3 lead-free ceramics: Microstructure and piezoelectricity, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • S.I. Sadovnikov, A.I. Gusev, Effect of particle size on the thermal expansion of nanostructured lead sulfide films, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • L. Rus, S. Rada, V. Rednic, E. Culea, M. Rada, A. Bot, N. Aldea, T. Rusu, Structural and optical properties of the lead based glasses containing iron (III) oxide, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • A. Oury, A. Kirchev, Y. Bultel, Cycling of soluble lead flow cells comprising a honeycomb-shaped positive electrode, Journal of Power Sources, Volume 264, 15 October 2014
  • Bo Wang, Shifang Xiao, Xianglai Gan, Huiqiu Deng, Xiaofan Li, Xuegui Sun, Wangyu Hu, Diffusion properties of liquid lithium–lead alloys from atomistic simulation, Computational Materials Science, Volume 93, October 2014
  • A.F. Zatsepin, H.-J. Fitting, E.A. Buntov, V.A. Pustovarov, B. Schmidt, Defects and localized states in silica layers implanted with lead ions, Journal of Luminescence, Volume 154, October 2014
  • Admira Bosnjakovic, Marek Danilczuk, Shulamith Schlick, Pa N. Xiong, Gregory M. Haugen, Steven J. Hamrock, An attempt to generate anion exchange membranes by amination of the perfluorinated 3M precursor leads to the hydrolysis of the precursor, Journal of Membrane Science, Volume 467, 1 October 2014
  • Yi Liu, Pengran Gao, Xianfu Bu, Guizhi Kuang, Wei Liu, Lixu Lei, Nanocrosses of lead sulphate as the negative active material of lead acid batteries, Journal of Power Sources, Volume 263, 1 October 2014
  • Jun Gou, Anson Lee, Jan Pyko, Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications, Journal of Power Sources, Volume 263, 1 October 2014
  • S. Mostafa Hosseinpour-Mashkani, Majid Ramezani, Morteza Vatanparast, Synthesis and characterization of lead selenide nanostructure through simple sonochemical method in the presence of novel precursor, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Rajkumar Nirmala, Kyung Soo Jeon, Rangaswamy Navamathavan, Hak Yong Kim, Soo-Jin Park, Synthesis and characterization of electrospun cadmium sulfide- and lead sulfide-blended poly(vinyl acetate) composite nanofibers, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Srimala Sreekantan, Syazwani Mohd. Zaki, Chin Wei Lai, Teoh Wah Tzu, Copper-incorporated titania nanotubes for effective lead ion removal, Materials Science in Semiconductor Processing, Volume 26, October 2014

Recent Research & Development for Oxalates

  • E. Amadio, L. Toniolo, Efficient oxidative carbonylation of iPrOH to oxalate catalyzed by Pd(II)–PPh3 complexes using benzoquinone as a stoichiometric oxidant, Journal of Organometallic Chemistry, Volume 767, 15 September 2014
  • Michael L. Tarlton, Alexander E. Anderson, Michael P. Weberski Jr., Xavier Riart-Ferrer, Brandon M. Nelson, Craig C. McLauchlan, Synthesis, characterization, and electrochemical properties of μ-oxalate bridged vanadium(III) and (IV) dimers incorporating the Kläui ligand, CpPORCo (R = Me, Et), Inorganica Chimica Acta, Volume 420, 24 August 2014
  • A. Verganelaki, V. Kilikoglou, I. Karatasios, P. Maravelaki-Kalaitzaki, A biomimetic approach to strengthen and protect construction materials with a novel calcium-oxalate–silica nanocomposite, Construction and Building Materials, Volume 62, 15 July 2014
  • Ioana Mindru, Dana Gingasu, Gabriela Marinescu, Luminita Patron, Jose Maria Calderon-Moreno, Cristina Bartha, Cristian Andronescu, Alina Crisan, Cobalt chromite obtained by thermal decomposition of oxalate coordination compounds, Ceramics International, Available online 8 July 2014
  • Francesco Delogu, Mechanochemical decomposition of Ag and Ni oxalates, Materials Chemistry and Physics, Available online 21 June 2014
  • Juan-Juan Hou, Xia Xu, Ning Jiang, Ya-Qin Wu, Xian-Ming Zhang, Selective adsorption in two porous triazolate–oxalate-bridged antiferromagnetic metal-azolate frameworks obtained via in situ decarboxylation of 3-amino-1,2,4-triazole-5-carboxylic acid, Journal of Solid State Chemistry, Available online 20 June 2014
  • Xingmei Guo, Yingxin Gong, Xiaoting Huang, Yuanyuan Tian, Yanlin Zhang, Shengrun Zheng, Ronghua Zeng, Mengqing Xu, Self-assembled microporous lanthanide coordination polymers built by 2-hydroxynicotinic acid and oxalate ligands, Inorganic Chemistry Communications, Volume 44, June 2014
  • Yuchun Jiang, Benzhi Li, Yu Wang, Daliang Liu, Ximing Song, Xiaohong Chang, Self-assembly of Schiff-base palladacycle-based discrete pseudo-macrocycles: Evidence for hemilability of oxalate ligand, Journal of Organometallic Chemistry, Volume 759, 1 June 2014
  • Wang Kaituo, Wu Xuehang, Wu Wenwei, Li Yongni, Liao Sen, Synthesis of perovskite LaCoO3 by thermal decomposition of oxalates: Phase evolution and kinetics of the thermal transformation of the precursor, Ceramics International, Volume 40, Issue 4, May 2014
  • A. Świtlicka-Olszewska, B. Machura, J. Mroziński, Synthesis, magnetic behavior and structural characterization of novel one-dimensional copper(II) coordination polymer based on azide and oxalate bridges, Inorganic Chemistry Communications, Volume 43, May 2014