Rubidium Sulfate Solution

CAS 7488-54-2

Product Product Code Order or Specifications
(2N) 99% Rubidium Sulfate Solution RB-SAT-02-SOL Contact American Elements
(3N) 99.9% Rubidium Sulfate Solution RB-SAT-03-SOL Contact American Elements
(4N) 99.99% Rubidium Sulfate Solution RB-SAT-04-SOL Contact American Elements
(5N) 99.999% Rubidium Sulfate Solution RB-SAT-05-SOL Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
Rb2SO4 7488-54-2 135175685 197088 MFCD00011190 231-301-7 rubidium(1+); sulfate N/A [Rb+].[Rb+].

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
O4Rb2S 267.00 Liquid 530 °C
(986 °F)
N/A 3.61 g/cm3 265.775309 265.775309 0 Safety Data Sheet

Sulfate IonRubidium Sulfate Solutions are moderate to highly concentrated liquid solutions of Rubidium Sulfate. They are an excellent source of Rubidium Sulfate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Rubidium Sulfate Powder.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Rubidium (Rb) atomic and molecular weight, atomic number and elemental symbol Rubidium (atomic symbol: Rb, atomic number: 37) is a Block S, Group 1, Period 5 element with an atomic weight of 5.4678. Rubidium Bohr ModelThe number of electrons in each of Rubidium's shells is [2, 8, 18, 8, 1] and its electron configuration is [Kr] 5s1. The rubidium atom has a radius of 248 pm and a Van der Waals radius of 303 pm. Rubidium is highly reactive, with properties similar to other Group 1 Alkali metals, e.g., rapid oxidation in air. In its elemental form, rubidium has a gray white appearance. Rubidium is found in the minerals lepidolite, leucite, pollucite, carnallite, and zinnwaldite as well as some potassium minerals. Rubidium was discovered by Robert Bunsen and Gustav Kirchhoff in 1861 and was first isolated by George de Hevesy. The name Rubidium, originates from the Latin word rubidus, meaning "dark or deepest red." For more information on rubidium, including properties, safety data, research, and American Elements' catalog of rubidium products, visit the Rubidium Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number WS8350000
Transport Information N/A
WGK Germany 2
Globally Harmonized System of
Classification and Labelling (GHS)

Dirubidium sulfate; Sulfuric acid, dirubidium salt; Rubidium sulphate; Rubidium(1+) sulfate; Rubidium(I) sulfate

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Rubidium

  • Eun Hyun Cha, Taek Jeong, Heung-Ryoul Noh, Two-color polarization spectroscopy in V-type configuration in rubidium, Optics Communications, Volume 326, 1 September 2014
  • Radosław Chrapkiewicz, Wojciech Wasilewski, Czesław Radzewicz, How to measure diffusional decoherence in multimode rubidium vapor memories?, Optics Communications, Volume 317, 15 April 2014
  • Anqing Jiao, Hongping Wu, Shilie Pan, Hongwei Yu, Zhihua Yang, Chen Lei, Synthesis, structure, and characterization of a new rubidium cadmium borate: RbCdB3O6, Journal of Alloys and Compounds, Volume 588, 5 March 2014
  • R. Král, K. Nitsch, V. Babin, J. Šulc, H. Jelínková, Y. Yokota, A. Yoshikawa, M. Nikl, Growth and optical properties of RE-doped ternary rubidium lead chloride single crystals, Optical Materials, Volume 36, Issue 2, December 2013
  • A.V. Anikeenko, N.N. Medvedev, N.F. Uvarov, Molecular dynamics study of ion migration mechanism in rubidium nitrate, Solid State Ionics, Volume 251, 15 November 2013
  • Pawel Krys, Flaviano Testa, Andrzej Trochimczuk, Christian Pin, Jean-Marie Taulemesse, Thierry Vincent, Eric Guibal, Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium(I), Journal of Colloid and Interface Science, Volume 409, 1 November 2013
  • Hichri Monia, Zamali Hmida, Khattech Ismail, Heat capacities and enthalpies of fusion of lithium and rubidium nitrates: Heat capacities, enthalpies of fusion and enthalpies of formation of the intermediate compounds Ag0.5Rb0.5NO3 and Li0.5Rb0.5NO3, Thermochimica Acta, Volume 568, 20 September 2013
  • Brian K. Nicholson, Christopher J. Clark, Geoffrey B. Jameson, Shane G. Telfer, Rubidium-templated bowl-shaped isopolyoxoantimonates [RbH11−x(RSb)14O34]x− derived from arylstibonic acids, Inorganica Chimica Acta, Volume 406, 1 September 2013
  • Aiqin Mao, Hua Wang, Renming Pan, Corrigendum to “Coke deactivation of activated carbon-supported rubidium-potassium catalyst for C2F5I gas-phase synthesis” [J. Fluorine Chem. 150 (2013) 21–24], Journal of Fluorine Chemistry, Volume 153, September 2013
  • Aiqin Mao, Hua Wang, Renming Pan, Coke deactivation of activated carbon-supported rubidium–potassium catalyst for C2F5I gas-phase synthesis, Journal of Fluorine Chemistry, Volume 150, June 2013

Recent Research & Development for Sulfates

  • Marta García-Maté, Angeles G. De la Torre, Laura León-Reina, Enrique R. Losilla, Miguel A.G. Aranda, Isabel Santacruz, Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement, Cement and Concrete Composites, Volume 55, January 2015
  • Jin Gi Hong, Yongsheng Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, Journal of Membrane Science, Volume 473, 1 January 2015
  • Jie-Cen Zhong, Fang Wan, Yan-Qiong Sun, Yi-Ping Chen, Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid, Journal of Solid State Chemistry, Volume 221, January 2015
  • Haihan Zhou, Gaoyi Han, Dongying Fu, Yunzhen Chang, Yaoming Xiao, Hua-Jin Zhai, Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage, Journal of Power Sources, Volume 272, 25 December 2014
  • Edgar Ventosa, Marcel Skoumal, Francisco Javier Vázquez, Cristina Flox, Joan Ramon Morante, Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver–silver sulfate, Journal of Power Sources, Volume 271, 20 December 2014
  • Xiaoshi Lang, Dianlong Wang, Chiyu Hu, Shenzhi Tang, Junsheng Zhu, Chenfeng Guo, The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery, Journal of Power Sources, Volume 270, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • J. Stroh, M.-C. Schlegel, E.F. Irassar, B. Meng, F. Emmerling, Applying high resolution SyXRD analysis on sulfate attacked concrete field samples, Cement and Concrete Research, Volume 66, December 2014
  • Neda Mobasher, Susan A. Bernal, Oday H. Hussain, David C. Apperley, Hajime Kinoshita, John L. Provis, Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes, Cement and Concrete Research, Volume 66, December 2014
  • Mark Whittaker, Maciej Zajac, Mohsen Ben Haha, Frank Bullerjahn, Leon Black, The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends, Cement and Concrete Research, Volume 66, December 2014