Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells.

Title Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells.
Authors P.L. Goto; M.P. Siqueira-Moura; A.C. Tedesco
Journal Int J Pharm
DOI 10.1016/j.ijpharm.2017.01.004

Cutaneous melanoma is the most aggressive skin cancer and is particularly resistant to current therapeutic approaches. Photodynamic therapy (PDT) is a well-established photoprocess that is employed to treat some cancers, including non-melanoma skin cancer. Aluminum chloride phthalocyanine (ClAlPc) is used as a photosensitizer in PDT; however, its high hydrophobicity hampers its photodynamic activity under physiological conditions. The aim of this study was to produce solid lipid nanoparticles (SLN) containing ClAlPc using the direct emulsification method. ClAlPc-loaded SLNs (ClAlPc/SLNs) were characterized according to their particle size and distribution, zeta potential, morphology, encapsulation efficiency, stability, and phototoxic action in vitro in B16-F10 melanoma cells. ClAlPc/SLN had a mean diameter between 100 and 200nm, homogeneous size distribution (polydispersity index <0.3), negative zeta potential, and spherical morphology. The encapsulation efficiency was approximately 100%. The lipid crystallinity was investigated using X-ray diffraction and differential scanning calorimetry and indicated that ClAlPc was integrated into the SLN matrix. The ClAlPc/SLN formulations maintained their physicochemical stability without expelling the drug over a 24-month period. Compared to free ClAlPc, ClAlPc/SLN exerted outstanding phototoxicity effects in vitro against melanoma cells. Therefore, our results demonstrated that the ClAlPc/SLN described in the current study has the potential for use in further preclinical and clinical trials in PDT for melanoma treatment.

Citation P.L. Goto; M.P. Siqueira-Moura; A.C. Tedesco.Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells.. Int J Pharm. 2017;518(1-2):228241. doi:10.1016/j.ijpharm.2017.01.004

Related Elements


See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.


Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.


See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.