Copper(II) Cyclohexanebutyrate

CAS #

[C6H11(CH2)3CO2]2Cu

Request a Quote

Product Code Product Request Quote
CU-CHBU-02 (2N) 99% Copper(II) Cyclohexanebutyrate Request
CU-CHBU-03 (3N) 99.9% Copper(II) Cyclohexanebutyrate Request
CU-CHBU-04 (4N) 99.99% Copper(II) Cyclohexanebutyrate Request
CU-CHBU-05 (5N) 99.999% Copper(II) Cyclohexanebutyrate Request

About

Copper(II) Cyclohexanebutyrate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

Cupric 4-cyclohexylbutyrate; Copper(2+) bis(4-cyclohexylbutanoate); Copper(II) 4-cyclohexylbutyrate; copper 4-cyclohexylbutanoate; cyclohexanebutanoic acid, copper(2+) salt (2:1)

Chemical Identifiers

Formula [C6H11(CH2)3CO2]2Cu
CAS 2218-80-6
Pubchem CID 75199
MDL MFCD00036399
EC No. 218-723-7
IUPAC Name copper; 4-cyclohexylbutanoate
SMILES [Cu+2].[O-]C(=O)CCCC1CCCCC1.[O-]C(=O)CCCC1CCCCC1
InchI Identifier InChI=1S/2C10H18O2.Cu/c2*11-10(12)8-4-7-9-5-2-1-3-6-9;/h2*9H,1-8H2,(H,11,12);/q;;+2/p-2
InchI Key FGUOYHAMMRMUQO-UHFFFAOYSA-L

Properties

Compound Formula C20H34CuO4
Molecular Weight 402.03
Appearance Blue powder
Melting Point 126 °C
Boiling Point 283.3 °C
Density N/A
Exact Mass 401.175307
Monoisotopic Mass 401.175307

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

CuSee more Copper products. Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper.

Research

Recent Research & Development for Copper

  • Crystal structure of tetra-kis-(μ3-2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}phenolato)tetra-copper(II) ethanol monosolvate 2.5-hydrate. Wang W, Ran J. Acta Crystallogr E Crystallogr Commun. 2015 Apr 22
  • Crystal structure of di-chlorido-bis-(methyl isonicotinate-κN)copper(II). Ahadi E, Hosseini-Monfared H, Mayer P. Acta Crystallogr E Crystallogr Commun. 2015 Apr 18
  • Copper, lead and zinc removal from metal contaminated wastewater by adsorption onto agricultural wastes. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PN. Environ Technol. 2015 May 22:1-33.
  • Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL. Phys Chem Chem Phys. 2015 May 22.
  • The relative importance of diet-related and waterborne effects of copper for a leaf-shredding invertebrate. Zubrod JP, Englert D, Rosenfeldt RR, Wolfram J, Lüderwald S, Wallace D, Schnetzer N, Schulz R, Bundschuh M. Environ Pollut. 2015 May 19
  • Low-current field-assisted assembly of copper nanoparticles for current collectors. Liu L, Choi BG, Tung SO, Hu T, Liu Y, Li T, Zhao T, Kotov NA. Faraday Discuss. 2015 May 21.
  • Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Siddique YH, Haidari M, Khan W, Fatima A, Jyoti S, Khanam S, Naz F, Rahul, Ali F, Singh BR, Beg T, Mohibullah, Naqvi AH. Toxicol Mech Methods. 2015 May 22:1-8.
  • Being two is better than one-catalytic reductions with dendrimer encapsulated copper- and copper-cobalt-subnanoparticles. Ficker M, Petersen JF, Gschneidtner T, Rasmussen AL, Purdy T, Hansen JS, Hansen TH, Husted S, Moth Poulsen K, Olsson E, Christensen JB. Chem Commun (Camb). 2015 May 22.
  • Sustainable Hydrogen Production by Ethanol Steam Reforming using a Partially Reduced Copper-Nickel Oxide Catalyst. Chen LC, Cheng H, Chiang CW, Lin SD. ChemSusChem. 2015 Apr 15.: ChemSusChem
  • Aerosol assisted CVD grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity resilient detection of H2S. Annanouch FE, Haddi Z, Vallejos S, Umek P, Guttmann P, Bittencourt C, Llobet E. ACS Appl Mater Interfaces. 2015 Mar 16.

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.