Erbium Chloride Silicate
ORDER
Product | Product Code | ORDER | SAFETY DATA | Technical data |
---|---|---|---|---|
(4N) 99.99% Erbium Chloride Silicate | ERCL-SIAT-04 | Pricing Add to cart only | SDS > | Data Sheet > |
(5N) 99.999% Erbium Chloride Silicate | ERCL-SIAT-05 | Pricing Add to cart only | SDS > | Data Sheet > |
(2N) 99% Erbium Chloride Silicate | ERCL-SIAT-02 | Pricing Add to cart only | SDS > | Data Sheet > |
(3N) 99.9% Erbium Chloride Silicate | ERCL-SIAT-03 | Pricing Add to cart only | SDS > | Data Sheet > |
Erbium Chloride Silicate Properties (Theoretical)
Compound Formula | Er3ClSi2O8 |
---|---|
Molecular Weight | 721.4 |
Appearance | Crystalline Solid |
Melting Point | N/A |
Boiling Point | N/A |
Density | N/A |
Solubility in H2O | N/A |
Erbium Chloride Silicate Health & Safety Information
Signal Word | N/A |
---|---|
Hazard Statements | N/A |
Hazard Codes | N/A |
Risk Codes | N/A |
Safety Statements | N/A |
Transport Information | N/A |
About Erbium Chloride Silicate
Synonyms
ECS, Er<sub>3</sub>Cl(SiO<sub>4</sub>)<sub>2</sub>
Chemical Identifiers
Linear Formula | Er3(SiO4)2Cl |
---|---|
Pubchem CID | N/A |
MDL Number | N/A |
EC No. | N/A |
Beilstein/Reaxys No. | |
Chemical Formula | |
Molecular Weight | |
Standard InchI | |
Appearance | |
Melting Point | |
Boiling Point | |
Density |
Customers For Erbium Chloride Silicate Have Also Viewed
Related Applications, Forms & Industries for Erbium Chloride Silicate
Packaging Specifications
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.
Related Elements
Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. In its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.
See more Erbium products. Erbium (atomic symbol: Er, atomic number: 68) is a Block F, Group 3, Period 6 element with an atomic radius of 167.259. The number of electrons in each of Erbium's shells is [2, 8, 18, 30, 8, 2] and its electron configuration is [Xe]4f12 6s2. The erbium atom has a radius of 176 pm and a Van der Waals radius of 235 pm. Erbium was discovered by Carl Mosander in 1843. Sources of Erbium include the mineral monazite and sand ores. Erbium is a member of the lanthanide or rare earth series of elements.
In its elemental form, erbium is soft and malleable. It is fairly stable in air and does not oxidize as rapidly as some of the other rare earth metals. Erbium's ions fluoresce in a bright pink color, making them highly useful for imaging and optical applications. It is named after the Swedish town Ytterby where it was first discovered.
See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. The number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon.
Silica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.
Recent Research
TODAY'S TOP DISCOVERY™!
Los Angeles, CA