Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters.

Title Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters.
Authors B. Huitorel; H.El Moll; R. Utrera-Melero; M. Cordier; A. Fargues; A. Garcia; F. Massuyeau; C. Martineau-Corcos; F. Fayon; A. Rakhmatullin; S. Kahlal; J.Y. Saillard; T. Gacoin; S. Perruchas
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b03160
Abstract

Luminescent materials based on copper complexes are currently receiving increasing attention because of their rich photophysical properties, opening a wide field of applications. The copper iodide clusters formulated [CuIL] (L = ligand), are particularly relevant for the development of multifunctional materials based on their luminescence stimuli-responsive properties. In this context, controlling and modulating their photophysical properties is crucial and this can only be achieved by thorough understanding of the origin of the optical properties. We thus report here, the comparative study of a series of cubane copper iodide clusters coordinated by different phosphine ligands, with the goal of analyzing the effect of the ligands nature on the photoluminescence properties. The synthesis, structural, and photophysical characterizations along with theoretical investigations of copper iodide clusters with ligands presenting different electronic properties, are described. A method to simplify the analysis of the P solid-state NMR spectra is also reported. While clusters with electron-donating groups present classical luminescence properties, the cluster bearing strong electron-withdrawing substituents exhibits original behavior demonstrating a clear influence of the ligands properties. In particular, the electron-withdrawing character induces a decrease in energy of the unoccupied molecular orbitals, that consequently impacts the emission properties. The modification of the luminescence thermochromic properties of the clusters are supported by density functional theory (DFT) calculations. This study demonstrates that the control of the luminescence properties of these compounds can be achieved through modification of the coordinated ligands, nevertheless the role of the crystal packing should not be underestimated.

Citation B. Huitorel; H.El Moll; R. Utrera-Melero; M. Cordier; A. Fargues; A. Garcia; F. Massuyeau; C. Martineau-Corcos; F. Fayon; A. Rakhmatullin; S. Kahlal; J.Y. Saillard; T. Gacoin; S. Perruchas.Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters.. Inorg Chem. 2018;57(8):43284339. doi:10.1021/acs.inorgchem.7b03160

Related Elements

Iodine

See more Iodine products. Iodine (atomic symbol: I, atomic number: 53) is a Block P, Group 17, Period 5 element with an atomic radius of 126.90447. The number of electrons in each of Iodine's shells is 2, 8, 18, 18, 7 and its electron configuration is [Kr] 4d10 5s2 5p5. The iodine atom has a radius of 140 pm and a Van der Waals radius of 198 pm. In its elemental form, iodine has a lustrous metallic gray appearance as a solid and a violet appearance as a gas or liquid solution. Elemental IodineIodine forms compounds with many elements, but is less active than the other halogens. It dissolves readily in chloroform, carbon tetrachloride, or carbon disulfide. Iodine compounds are important in organic chemistry and very useful in the field of medicine. Iodine was discovered and first isolated by Bernard Courtois in 1811. The name Iodine is derived from the Greek word "iodes" meaning violet.

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Related Forms & Applications