Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants.

Title Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants.
Authors N. Ren; J. Li; J. Qiu; M. Yan; H. Liu; D. Ji; J. Huang; J. Yu; H. Liu
Journal Dent Mater
DOI 10.1016/j.dental.2017.03.001
Abstract

OBJECTIVE: In this study, the objective is to construct graphene-oxide-coated titanate on titanium foils as drug vehicle to enhance cell proliferation and osteo-differentiation of rat bone mesenchymal stem cells (rBMSCs).

METHODS: Graphene oxide (GO) sheets obtained using the modified Hummer's method and characterized by AFM were coupled with bioactive titanate on Ti implants (GO-Ti) pretreated by alkali, followed by reduction (rGO-Ti). They were characterized by Raman spectroscopy, XPS, SEM, FTIR and contact angle. After dexamethasone (DEX) was loaded onto them (DEX-GO-Ti and DEX-rGO-Ti), cell proliferation of rBMSCs on them was evaluated by CCK-8 and F-actin staining, and differentiation through alkaline phosphatase activity, mRNA expression, and calcium nodules.

RESULTS: The obtained GO sheets were monolayers from AFM. Raman spectra exhibited two prominent peaks at D and G bands, and the I(D)/I(G) ratios increased from 0.96 to 1.68 after reduction. XPS proved the existence of oxygenated functional groups for GO-Ti and the reduction of their intensity for rGO-Ti. From SEM, GO and rGO were evenly coated on nanostructures. DEX-GO-Ti absorbed most amount of DEX and released in a sustained manner. CCK-8 results showed that DEX-GO-Ti showed excellent performance on promoting cell proliferation. RMBSCs on DEX-GO-Ti presented greatly high expression of calcium, proteins and mRNA related to osteogenic differentiation.

SIGNIFICANCE: GO coated titanate nanostructrues on surfaces of Ti foils by a simple self-assembly method, showed excellent vechiles for DEX. The construct promoted proliferation and accelerated osteogenic differentiation of rBMSCs, and would be prosperous for their further applications.

Citation N. Ren; J. Li; J. Qiu; M. Yan; H. Liu; D. Ji; J. Huang; J. Yu; H. Liu.Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants.. Dent Mater. 2017;33(5):525535. doi:10.1016/j.dental.2017.03.001

Related Elements

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Related Forms & Applications