Hafnium Nitrate



Request Quote

Product Code Available Product Forms Request A Quote
HF-NAT-02 (2N) 99% Hafnium Nitrate Request
HF-NAT-03 (3N) 99.9% Hafnium Nitrate Request
HF-NAT-04 (4N) 99.99% Hafnium Nitrate Request
HF-NAT-05 (5N) 99.999% Hafnium Nitrate Request


Compound Formula HfN 4O12
Molecular Weight 426.51
Appearance N/A
Melting Point N/A
Boiling Point N/A
Density N/A
Exact Mass 427.898
Monoisotopic Mass 427.898

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A


Nitrate IonHafnium Nitrate is a moderately water soluble crystalline Hafnium source that decomposes to Hafnium oxide on heating. It is generally immediately available in most volumes. Acetates are excellent precursors for production of ultra high purity compounds and certain catalyst and nanoscale(nanoparticles and nanopowders) materials. All metallic acetates are inorganic salts of a metal cation and the acetate anion. The acetate anion is a univalent (-1 charge) polyatomic ion composed of two carbon atoms ionically bound to three hydrogen and two oxygen atoms (Symbol: CH3COO) for a total formula weight of 59.05. Ultra high purity, high purity, submicron and nanopowder forms may be considered. Nitrate compounds are generally soluble in water. Nitrate materials are also oxidizing agents. When mixed with hydrocarbons, nitrate compounds can form a flammable mixture. Nitrates are excellent precursors for production of ultra high purity compounds and certain catalyst and nanoscale(nanoparticles and nanopowders) materials. All metallic nitrates are inorganic salts of a given metal cation and the nitrate anion. The nitrate anion is a univalent (-1 charge) polyatomic ion composed of a single nitrogen atom ionically bound to three oxygen atoms (Symbol: NO3) for a total formula weight of 62.05. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.


Hafnium tetranitrate, Nitric acid, hafnium(4+) salt, Hafnium (+4) cation tetranitrate

Chemical Identifiers

Formula Hf(NO3)4
CAS 15509-05-4
Pubchem CID 167292
MDL MFCD00792273
EC No. N/A
IUPAC Name hafnium(4+) tetranitrate
SMILES [Hf].O=[N+]([O-])[O-].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O
InchI Identifier InChI=1S/Hf.4NO3/c;4*2-1(3)4/q;4*-1

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products & Element Information

See more Hafnium products. Hafnium (atomic symbol: Hf, atomic number: 72) is a Block D, Group 4, Period 6 element with an atomic weight of 178.49. Hafnium Bohr ModelThe number of electrons in each of Hafnium's shells is 2, 8, 18, 32, 10, 2 and its electron configuration is [Xe] 4f14 5d2 6s2. The hafnium atom has a radius of 159 pm and a Van der Waals radius of 212 pm. Hafnium was predicted by Dmitri Mendeleev in 1869 but it was not until 1922 that it was first isolated Dirk Coster and George de Hevesy. In its elemental form, hafnium has a lustrous silvery-gray appearance. Elemental HafniumHafnium does not exist as a free element in nature. It is found in zirconium compounds such as zircon. Hafnium is often a component of superalloys and circuits used in semiconductor device fabrication. Its name is derived from the Latin word Hafnia, meaning Copenhagen, where it was discovered.