Highly efficient upconversion of Er in Yb codoped non-cytotoxic strontium lanthanum aluminate phosphor for low temperature sensors.

Title Highly efficient upconversion of Er in Yb codoped non-cytotoxic strontium lanthanum aluminate phosphor for low temperature sensors.
Authors K. Pavani; S. Kumar; K. Srikanth; M.J. Soares; E. Pereira; A.J. Neves; M.P.F. Graça
Journal Sci Rep
DOI 10.1038/s41598-017-17725-z
Abstract

Er and Er/Yb melilite-based SrLaAlO (SLA) phosphors were synthesized by a facile Pechine method. The differences in emission intensities of I???I transition in NIR region when excited with Ar and 980?nm lasers were explained in terms of energy transfer mechanisms. Temperature and power dependence of upconversion bands in the visible region centered at 528, 548 and 660?nm pertaining to H, S and F???I transitions were investigated. Fluorescence intensity ratio (FIR) technique was used to explore temperature sensing behaviour of the thermally coupled levels H/S of Er ions in the phosphors within the temperature range 14-300?K and the results were extrapolated up to 600?K. Anomalous intensity trend observed in Er doped SLA phosphor was discussed using energy level structure. Cytotoxicity of phosphors has been evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Bluegill sunfish cells (BF-2). The non-cytotoxic nature and high sensitivity of the present phosphors pay a way for their use in vitro studies and provide potential interest as a thermo graphic phosphor at the contact of biological products.

Citation K. Pavani; S. Kumar; K. Srikanth; M.J. Soares; E. Pereira; A.J. Neves; M.P.F. Graça.Highly efficient upconversion of Er in Yb codoped non-cytotoxic strontium lanthanum aluminate phosphor for low temperature sensors.. Sci Rep. 2017;7(1):17646. doi:10.1038/s41598-017-17725-z

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Strontium

See more Strontium products. Strontium (atomic symbol: Sr, atomic number: 38) is a Block S, Group 2, Period 5 element with an atomic weight of 87.62 . Strontium Bohr ModelThe number of electrons in each of Strontium's shells is [2, 8, 18, 8, 2] and its electron configuration is [Kr] 5s2. The strontium atom has a radius of 215 pm and a Van der Waals radius of 249 pm. Strontium was discovered by William Cruickshank in 1787 and first isolated by Humphry Davy in 1808. In its elemental form, strontium is a soft, silvery white metallic solid that quickly turns yellow when exposed to air. Elemental StrontiumCathode ray tubes in televisions are made of strontium, which are becoming increasingly displaced by other display technologies pyrotechnics and fireworks employ strontium salts to achieve a bright red color. Radioactive isotopes of strontium have been used in radioisotope thermoelectric generators (RTGs) and for certain cancer treatments. In nature, most strontium is found in celestite (as strontium sulfate) and strontianite (as strontium carbonate). Strontium was named after the Scottish town where it was discovered.

Ytterbium

See more Ytterbium products. Ytterbium (atomic symbol: Yb, atomic number: 70) is a Block F, Group 3, Period 6 element with an atomic weight of 173.054. Ytterbium Bohr ModelThe number of electrons in each of Ytterbium's shells is [2, 8, 18, 32, 8, 2] and its electron configuration is [Xe]4f14 6s2. The Ytterbium atom has a radius of 176 pm and a Van der Waals radius of 242 pm. Ytterbium was discovered by Jean Charles Galissard de Marignac in 1878 and first isolated by Georges Urbain in 1907.Elemental Ytterbium In its elemental form, ytterbium has a silvery-white color. Ytterbium is found in monazite sand as well as the ores euxenite and xenotime. Ytterbium is named after Ytterby, a village in Sweden. Ytterbium can be used as a source for gamma rays, for the doping of stainless steel, or other active metals. Its electrical resistivity rises under stress, making it very useful for stress gauges that measure the deformation of the ground in the even of an earthquake.

Related Forms & Applications