Influence of aluminates on the structure and dynamics of water and ions in the nanometer channel of calcium silicate hydrate (C-S-H) gel.

Title Influence of aluminates on the structure and dynamics of water and ions in the nanometer channel of calcium silicate hydrate (C-S-H) gel.
Authors D. Hou; T. Li
Journal Phys Chem Chem Phys
DOI 10.1039/c7cp06985e
Abstract

The transport and adsorption behavior of ions and water in nanometer pores is influenced by the composition of the substrate. In this paper, to understand the effect of Al species on the properties of confined nanofluids, molecular dynamics is utilized to study the structure, dynamics and interfacial adsorption behavior of NaCl solution confined in the gel pores of C-S-H and C-A-S-H. The bridging silicate tetrahedron substituted by the aluminate species enhances the hydrophilic properties of C-S-H gel. As compared with water on the C-S-H surface, the water layered packing is densified and the magnitude of dipole moment is enlarged for water located in the vicinity of the C-A-S-H surface. This is mainly attributed to the increasing number of H bonds contributed by oxygen atoms in the aluminate silicate chains sharing more negativity. Furthermore, C-A-S-H gel immobilizes more sodium and chloride ions on the surface than C-S-H. Sodium ions can coordinate with about two to three oxygen atoms in the aluminate tetrahedron tessellated in the narrow vacancy of the silicate channel, forming inner adsorbed species. Weak interactions between Cl and the substrate are due to the few ionic pairs between Cl ions and surface-accumulated Na ions. Due to the strong Na-Os binding on the C-A-S-H surface, the diffusion coefficient of the Na ions confined in the nanometer pores is reduced by 50% and the hydration time for the Na ions associated with surrounding water is increased by 40% as compared with bulk solution.

Citation D. Hou; T. Li.Influence of aluminates on the structure and dynamics of water and ions in the nanometer channel of calcium silicate hydrate (C-S-H) gel.. Phys Chem Chem Phys. 2018. doi:10.1039/c7cp06985e

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Calcium

See more Calcium products. Calcium (atomic symbol: Ca, atomic number: 20) is a Block S, Group 2, Period 4 element with an atomic weight of 40.078. The number of electrons in each of Calcium's shells is [2, 8, 8, 2] and its electron configuration is [Ar]4s2. Calcium Bohr ModelThe calcium atom has a radius of 197 pm and a Van der Waals radius of 231 pm. Calcium was discovered and first isolated by Sir Humphrey Davy in 1808. It is the fifth most abundant element in the earth's crust and can be found in minerals such as dolomite, gypsum, plagioclases, amphiboles, pyroxenes and garnets. In its elemental form, calcium has a dull gray-silver appearance. Calcium is a reactive, soft metal that is a member of the alkaline earth elements. Elemental CalciumIt frequently serves as an alloying agent for other metals like aluminum and beryllium, and industrial materials like cement and mortar are composed of calcium compounds like calcium carbonate. It is also an biologically essential substance found in teeth, bones, and shells. The name "calcium" originates from the Latin word "calics," meaning lime.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications