Iron Disulfide

CAS 12068-85-8
Linear Formula: FeS2
MDL Number: MFCD00064690
EC No.: 235-106-8

Request Quote

(5N) 99.999% Iron Disulfide Ingot
FE2-S2-05-I Pricing
(5N) 99.999% Iron Disulfide Lump
FE2-S2-05-L Pricing
(5N) 99.999% Iron Disulfide Powder
FE2-S2-05-P Pricing
(5N) 99.999% Iron Disulfide Sputtering Target
FE2-S2-05-ST Pricing
(5N) 99.999% Iron Disulfide Wafer
FE2-S2-05-WSX Pricing


Compound Formula FeS2
Molecular Weight 119.975
Appearance dark gray to black metallic solid
Melting Point N/A
Boiling Point N/A
Density 4.7-4.87 g/cm3
Monoisotopic Mass 119.879082 Da
Exact Mass 119.879083

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Transport Information N/A


Sulfide IonIron Sulfide is a moderately water and acid soluble Iron source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Iron Sulfide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.


Iron(II) disulfide, Iron disulphide, Marcasite (CAS 1317-66-4 ), Hydropyrite, Iron(2+) disulfide, 23949-99-7, 58440-06-5

Chemical Identifiers

Linear Formula FeS2
CAS 12068-85-8
Pubchem CID 123110
MDL Number MFCD00064690
EC No. 235-106-8
Beilstein Registry No. N/A
IUPAC Name Iron(2+) disulfide
SMILES [Fe+2].[S-][S-]
InchI Identifier InChI=1S/Fe.S2/c;1-2/q+2;-2

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Products & Element Information

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Recent Research

Thermal and magnetic properties of chitosan-iron oxide nanoparticles., Soares, Paula I. P., Machado Diana, Laia César, Pereira Laura C. J., Coutinho Joana T., Ferreira Isabel M. M., Novo Carlos M. M., and Borges João Paulo , Carbohydr Polym, 2016 Sep 20, Volume 149, p.382-90, (2016)

Highly fluorescent carbon dots as selective and sensitive "on-off-on" probes for iron(III) ion and apoferritin detection and imaging in living cells., Han, Cuiping, Wang Ru, Wang Keying, Xu Huiting, Sui Meirong, Li Jingjing, and Xu Kai , Biosens Bioelectron, 2016 Sep 15, Volume 83, p.229-36, (2016)

Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study., Zhu, Changyin, Fang Guodong, Dionysiou Dionysios D., Liu Cun, Gao Juan, Qin Wenxiu, and Zhou Dongmei , J Hazard Mater, 2016 Oct 5, Volume 316, p.232-41, (2016)

Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism., Diao, Zeng-Hui, Xu Xiang-Rong, Chen Hui, Jiang Dan, Yang Yu-Xi, Kong Ling-Jun, Sun Yu-Xin, Hu Yong-Xia, Hao Qin-Wei, and Liu Ling , J Hazard Mater, 2016 Oct 5, Volume 316, p.186-93, (2016)

Yerba mate (Ilex paraguariensis St. Hill.)-based beverages: How successive extraction influences the extract composition and its capacity to chelate iron and scavenge free radicals., Colpo, Ana C., Rosa Hemerson, Lima Maria Eduarda, Pazzini Camila Eliza F., de Camargo Vanessa B., Bassante Felipa E. M., Puntel Robson, Ávila Daiana Silva, Mendez Andreas, and Folmer Vanderlei , Food Chem, 2016 Oct 15, Volume 209, p.185-95, (2016)

Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability., Tian, Tian, Blanco Elena, Smoukov Stoyan K., Velev Orlin D., and Velikov Krassimir P. , Food Chem, 2016 Oct 1, Volume 208, p.97-102, (2016)

Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release., Soares, Paula I. P., Sousa Ana Isabel, Ferreira Isabel M. M., Novo Carlos M. M., and Borges João Paulo , Carbohydr Polym, 2016 Nov 20, Volume 153, p.212-21, (2016)

Limited proteolysis of myoglobin opens channel in ferrochelatase-globin complex for iron to zinc transmetallation., Paganelli, Marcella O., Grossi Alberto B., Dores-Silva Paulo R., Borges Julio C., Cardoso Daniel R., and Skibsted Leif H. , Food Chem, 2016 Nov 1, Volume 210, p.491-9, (2016)

Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers., Zahraei, M, Marciello M, Lazaro-Carrillo A, Villanueva A, Herranz F, Talelli M, Costo R, Monshi A, Shahbazi-Gahrouei D, Amirnasr M, et al. , Nanotechnology, 2016 May 17, Volume 27, Issue 25, p.255702, (2016)

Question? Ask an American Elements Engineer


August 31, 2016
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

First DNA Sequencing in Space a Game Changer