Lanthanum chloride precipitation-based toxicoproteomic analysis of 3-monochloropropane-1,2-diol toxicity in rat kidney reveals involvement of extracellular signal-regulated kinase 2.

Title Lanthanum chloride precipitation-based toxicoproteomic analysis of 3-monochloropropane-1,2-diol toxicity in rat kidney reveals involvement of extracellular signal-regulated kinase 2.
Authors A. Oberemm; M. Braun; S. Sawada; M. Pink; F. Frenzel; C. Rozycki; C. Meckert; E. Zabinsky; A. Braeuning; A. Lampen
Journal Arch Toxicol
DOI 10.1007/s00204-017-1959-0
Abstract

The heat-induced food contaminant 3-monochloropropane-1,2-diol (3-MCPD) and its fatty acid esters exert nephrotoxicity in rodents. Previous studies including a non-targeted toxicoproteomics approach using samples from a 28-day oral toxicity study in rats with 10 mg/kg body weight (b.w.) of 3-MCPD, an equimolar dose of 53 mg/kg b.w. 3-MCPD dipalmitate and a lower dose of 13.3 mg/kg b.w. of 3-MCPD dipalmitate, revealed substance-induced alterations in metabolic pathways, especially for glycolysis and energy metabolism. In order to obtain deeper insight into mechanisms of 3-MCPD toxicity, samples from the above-mentioned study were reanalyzed using a lanthanum chloride precipitation-based toxicoproteomics approach in order to increase the yield of phosphorylated proteins, crucial players in cellular signaling. A comparison of standard 2D-gel-based proteomics and lanthanum chloride precipitation was performed, thus providing a comprehensive case study on these two methods using in vivo effects of an important food toxicant in a primary target organ. While resulting in similar 2D-gel electrophoresis pherograms and spot counts, data analysis demonstrated that lanthanum precipitation yielded more significantly deregulated proteins thus considerably improving our knowledge on 3-MCPD-dependent proteomic alterations in the kidney. 3-MCPD-induced deregulation of the phosphorylated, active version of extracellular signal-regulated kinase 2 (ERK2) in rat kidney was demonstrated using mass spectrometry and immunohistochemistry. In summary, this paper for the first time links 3-MCPD effects to deregulation of the ERK/mitogen-activated protein kinase signaling pathway in rat kidney and demonstrates that lanthanum chloride precipitation is suited to support the gain of mechanistic knowledge on organ toxicity using 2D-gel-based proteomics.

Citation A. Oberemm; M. Braun; S. Sawada; M. Pink; F. Frenzel; C. Rozycki; C. Meckert; E. Zabinsky; A. Braeuning; A. Lampen.Lanthanum chloride precipitation-based toxicoproteomic analysis of 3-monochloropropane-1,2-diol toxicity in rat kidney reveals involvement of extracellular signal-regulated kinase 2.. Arch Toxicol. 2017. doi:10.1007/s00204-017-1959-0

Related Elements

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Chlorine

Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Related Forms & Applications