Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study.

Title Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study.
Authors L. Fang; B. Wu; J.K.M. Chan; I.M.C. Lo
Journal Chemosphere
DOI 10.1016/j.chemosphere.2017.10.154

Lanthanum-based adsorbents are ideal candidates for phosphate removal because of their excellent affinity to phosphate. However, their application in the removal of trace-levels of phosphate from sewage is still unsatisfactory due to the limited adsorption capacity and inadequate optimization of the operational parameters. To overcome these drawbacks, we have developed a novel lanthanum hydroxide (LH), using a facile precipitation and hydrothermal process that involves a nanorod-like structure with the lengths ranging from 124 to 1700 nm, depending on the La/OH molar ratio. The phosphate adsorption capacity of the developed LH is up to 170.1 mg-P g-1 in synthetic water, while a slightly lower adsorption capacity of 111.1 mg-P g-1 is observed in a sewage sample. A polynominal model consisting of three variables (i.e. dosage, reaction time and initial phosphate concentration) for predicting efficiency of phosphate removal has been successfully developed using a face-centred central composite design (CCD)-based methodology. The results also suggest a strong interactive effect of the dosage with the phosphate concentration, and reaction time, which can significantly affect the optimization of the phosphate removal by LH. Both X-ray photoelectron spectroscopy and X-ray diffraction studies indicate that the inner sphere complexation of phosphate with LH is probably the major mechanism governing phosphate removal.

Citation L. Fang; B. Wu; J.K.M. Chan; I.M.C. Lo.Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study.. Chemosphere. 2018;192:209216. doi:10.1016/j.chemosphere.2017.10.154

Related Elements


See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.


Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of and its Van der Waals radius is Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications