Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study.

Title Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study.
Authors T. Chen; C. Guo; L. Xu; Q. Li; K. Luo; D. Liu; L. Wang; M. Long
Journal Phys Chem Chem Phys
DOI 10.1039/c7cp07467k
Abstract

Using the non-equilibrium Green's function formalism in combination with density functional theory, we calculated the spin-dependent electronic properties of molecular devices consisting of pristine and hydrogen-terminated zigzag gallium nitride nanoribbons (ZGaNNRs). Computational results show that the proposed ZGaNNR models display multiple functions with perfect spin filtering, rectification, and a spin negative differential resistance (sNDR) effect. Spin-dependent transport properties, spin density and transmission pathways with applied bias values were calculated to understand the spin filter and the sNDR effect. The spin filtering efficiency can be up to -100% or 100% within a large range of biases, and a dual spin filtering effect can also be found in these model devices. The highest rectification ratio reaches 4.9 × 109 in spin-down current of ZGaNNRs with only the passivated nitrogen edge, and only ZGaNNRs with the passivated gallium edge exhibit an obvious sNDR behavior with the largest peak to valley current ratio of 1.25 × 107. The proposed hydrogenated ZGaNNRs can be preferred materials for realizing oscillators, memory circuits and fast switching applications.

Citation T. Chen; C. Guo; L. Xu; Q. Li; K. Luo; D. Liu; L. Wang; M. Long.Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study.. Phys Chem Chem Phys. 2018. doi:10.1039/c7cp07467k

Related Elements

Gallium

See more Gallium products. Gallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia' referring to Gaul, the old name of France.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications