Multifunctionality of lanthanum-strontium manganite nanopowder.

Title Multifunctionality of lanthanum-strontium manganite nanopowder.
Authors Z. Wei; A.V. Pashchenko; N.A. Liedienov; I.V. Zatovsky; D.S. Butenko; Q. Li; I.V. Fesych; V.A. Turchenko; E.E. Zubov; Y. Polynchuk; V.G. Pogrebnyak; V.M. Poroshin; G.G. Levchenko
Journal Phys Chem Chem Phys
DOI 10.1039/d0cp01426e
Abstract

Manganites are multifunctional materials which are widely used in both technology and devices. In this article, new prospects of their use as nanoparticles for various types of applications are demonstrated. For that, the ferromagnetic nanopowder of LaSrMnO has been synthesized by the sol-gel method with a subsequent annealing at 700-900 °C. The crystal structure, phase composition and morphology of nanoparticles as well as magnetic, magnetothermal and electrocatalytic properties have been studied comprehensively. The critical sizes of superparamagnetic, single-domain, and multi-domain states have been determined. It has been established that an anomalously wide temperature range of magnetocaloric properties is associated with an additional contribution to the magnetocaloric effect from superparamagnetic nanoparticles. The maximum values of the specific loss power are observed in the relaxation hysteresis region near the magnetic phase transition temperature. The electrochemical stability and features of the decomposition of nanoparticles in 1 M KOH and NaSO electrolytes have been determined. A decrease in the particle size contributes to an increase in electrocatalytic activity for overall water splitting. Magnetocaloric and electrocatalytic results of the work indicate the prospects for obtaining the possibility of changing the temperature regime of electrocatalysis using contactless heating or cooling.

Citation Z. Wei; A.V. Pashchenko; N.A. Liedienov; I.V. Zatovsky; D.S. Butenko; Q. Li; I.V. Fesych; V.A. Turchenko; E.E. Zubov; Y. Polynchuk; V.G. Pogrebnyak; V.M. Poroshin; G.G. Levchenko.Multifunctionality of lanthanum-strontium manganite nanopowder.. Phys Chem Chem Phys. 2020;22(21):1181711828. doi:10.1039/d0cp01426e

Related Elements

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Strontium

See more Strontium products. Strontium (atomic symbol: Sr, atomic number: 38) is a Block S, Group 2, Period 5 element with an atomic weight of 87.62 . Strontium Bohr ModelThe number of electrons in each of Strontium's shells is [2, 8, 18, 8, 2] and its electron configuration is [Kr] 5s2. The strontium atom has a radius of 215 pm and a Van der Waals radius of 249 pm. Strontium was discovered by William Cruickshank in 1787 and first isolated by Humphry Davy in 1808. In its elemental form, strontium is a soft, silvery white metallic solid that quickly turns yellow when exposed to air. Elemental StrontiumCathode ray tubes in televisions are made of strontium, which are becoming increasingly displaced by other display technologies pyrotechnics and fireworks employ strontium salts to achieve a bright red color. Radioactive isotopes of strontium have been used in radioisotope thermoelectric generators (RTGs) and for certain cancer treatments. In nature, most strontium is found in celestite (as strontium sulfate) and strontianite (as strontium carbonate). Strontium was named after the Scottish town where it was discovered.

Related Forms & Applications