Protective radiolucent aluminium oxide coatings for beryllium X-ray optics.

Title Protective radiolucent aluminium oxide coatings for beryllium X-ray optics.
Authors O. Yurkevich; K. Maksimova; A. Goikhman; A. Grunin; P. Prokopovich; A. Tyurin; P. Medvedskaya; I. Lyatun; I. Snigireva; A. Snigirev
Journal J Synchrotron Radiat
DOI 10.1107/S1600577517007925

Beryllium, being one of the most transparent materials to X-ray radiation, has become the material of choice for X-ray optics instrumentation at synchrotron radiation sources and free-electron laser facilities. However, there are concerns due to its high toxicity and, consequently, there is a need for special safety regulations. The authors propose to apply protective coatings in order to seal off beryllium from the ambient atmosphere, thus preventing degradation processes providing additional protection for users and prolonging the service time of the optical elements. This paper presents durability test results for Be windows coated with atomic-layer-deposition alumina layers run at the European Synchrotron Radiation Facility. Expositions were performed under monochromatic, pink and white beams, establishing conditions that the samples could tolerate without radiation damage. X-ray treatment was implemented in various environments, i.e. vacuum, helium, nitrogen, argon and dry air at different pressures. Post-process analysis revealed their efficiency for monochromatic and pink beams.

Citation O. Yurkevich; K. Maksimova; A. Goikhman; A. Grunin; P. Prokopovich; A. Tyurin; P. Medvedskaya; I. Lyatun; I. Snigireva; A. Snigirev.Protective radiolucent aluminium oxide coatings for beryllium X-ray optics.. J Synchrotron Radiat. 2017;24(Pt 4):775780. doi:10.1107/S1600577517007925

Related Elements


See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.


See more Beryllium products. Beryllium (atomic symbol: Be, atomic number: 4) is a Block S, Group 2, Period 2 element with an atomic weight of 9.012182. Beryllium Bohr ModelThe number of electrons in each of Beryllium's shells is [2, 2] and its electron configuration is [He] 2s2. The beryllium atom has a radius of 112 pm and a Van der Waals radius of 153 pm. Beryllium is a relatively rare element in the earth's crust; it can be found in minerals such as bertrandite, chrysoberyl, phenakite, and beryl, its most common source for commercial production. Beryllium was discovered by Louis Nicolas Vauquelin in 1797 and first isolated by Friedrich Wöhler and Antoine Bussy in 1828. Elemental BerylliumIn its elemental form, beryllium has a gray metallic appearance. It is a soft metal that is both strong and brittle; its low density and high thermal conductivity make it useful for aerospace and military applications. It is also frequently used in X-ray equipment and particle physics. The origin of the name Beryllium comes from the Greek word "beryllos," meaning beryl.

Related Forms & Applications