Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.

Title Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.
Authors J. Xu; Y. Pu; X.Jin Yang; P. Wan; R. Wang; P. Song; A. Fisher
Journal Environ Technol
DOI 10.1080/09593330.2017.1369577

Water contamination with chlorinated hydrocarbons such as chloroform (CHCl3), carbon tetrachloride (CCl4) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl3, CCl4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 ?g/L CHCl3, CCl4 and TCE, removal efficiency of 45-64% was achieved in hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al13Fe4, Fe3Al and FeAl2) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons removal in water treatment.

Citation J. Xu; Y. Pu; X.Jin Yang; P. Wan; R. Wang; P. Song; A. Fisher.Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.. Environ Technol. 2017:123. doi:10.1080/09593330.2017.1369577

Related Elements


See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.


See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.


Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Related Forms & Applications