Synthesis of gallium oxynitride nanoparticles through hydrothermal reaction in the presence of acetylene black and their photocatalytic NOx decomposition.

Title Synthesis of gallium oxynitride nanoparticles through hydrothermal reaction in the presence of acetylene black and their photocatalytic NOx decomposition.
Authors Y. Asakura; Y. Inaguma; K. Ueda; Y. Masubuchi; S. Yin
Journal Nanoscale
DOI 10.1039/c7nr07502b
Abstract

Gallium oxynitride (GaON) nanoparticles were synthesized through three steps; (i) hydrothermal treatment of an aqueous solution containing Ga(NO3)3, hexamethylenetetramine (HMT), and acetylene black, (ii) calcination, and (iii) nitridation. The presence of acetylene black in the hydrothermal treatment is effective for the synthesis of Ga2O3 nanoparticles after the calcination. The intermediate obtained after the hydrothermal reaction possessed no detectable Ga particles in the TEM observation, although the presence of Ga was confirmed in the EDS measurement. This means that acetylene black (AB), in this study, cannot play a simple role as a template. The GaON nanoparticles obtained from the Ga2O3 nanoparticles through nitridation possessed a higher oxygen content than that from Ga2O3 obtained by hydrothermal synthesis without acetylene black and the subsequent calcination. The obtained GaON nanoparticles show higher photocatalytic NOx decomposition activity than bulk GaON synthesized under the same conditions except without acetylene black in the hydrothermal reaction, because of the longer absorption edge and the higher specific surface area. In addition, the effect of nitridation temperature and time on the obtained GaON nanoparticles and their photocatalytic activity was also investigated. Consequently, nanoparticle morphology of a precursor for GaON is important not only for high surface area but also for high visible-light response.

Citation Y. Asakura; Y. Inaguma; K. Ueda; Y. Masubuchi; S. Yin.Synthesis of gallium oxynitride nanoparticles through hydrothermal reaction in the presence of acetylene black and their photocatalytic NOx decomposition.. Nanoscale. 2018. doi:10.1039/c7nr07502b

Related Elements

Gallium

See more Gallium products. Gallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia' referring to Gaul, the old name of France.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications