Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement.

Title Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement.
Authors D. Mieritz; X. Li; A. Volosin; M. Liu; H. Yan; N.G. Walter; D.K. Seo
Journal Langmuir
DOI 10.1021/acs.langmuir.7b00761
Abstract

Housing bio-nano guest devices based on DNA nanostructures within porous, conducting, inorganic host materials promise valuable applications in solar energy conversion, chemical catalysis, and analyte sensing. Herein, we report a single-template synthetic development of hierarchically porous, transparent conductive metal oxide coatings whose pores are freely accessible by large biomacromolecules. Their hierarchal pore structure is bimodal with a larger number of closely packed open macropores (?200 nm) at the higher rank and with the remaining space being filled with a gel network of antimony-doped tin oxide (ATO) nanoparticles that is highly porous with a broad size range of textual pores mainly from 20-100 nm at the lower rank. The employed carbon black template not only creates the large open macropores but also retains the highly structured gel network as holey pore walls. Single molecule fluorescence microscopic studies with fluorophore-labeled DNA nanotweezers reveal a detailed view of multimodal diffusion dynamics of the biomacromolecules inside the hierarchically porous structure. Two diffusion constants were parsed from trajectory analyses that were attributed to free diffusion (diffusion constant D = 2.2 ?m(2)/s) and to diffusion within an average confinement length of 210 nm (D = 0.12 ?m(2)/s), consistent with the average macropore size of the coating. Despite its holey nature, the ATO gel network acts as an efficient barrier to the diffusion of the DNA nanostructures, which is strongly indicative of physical interactions between the molecules and the pore nanostructure.

Citation D. Mieritz; X. Li; A. Volosin; M. Liu; H. Yan; N.G. Walter; D.K. Seo.Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement.. Langmuir. 2017;33(25):64106418. doi:10.1021/acs.langmuir.7b00761

Related Elements

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Related Forms & Applications