Beryllium Circle

High Purity Be Metal Circles
CAS 7440-41-7


Product Product Code Order or Specifications
(2N) 99% Beryllium Circle BE-M-02-CRCL Contact American Elements
(3N) 99.9% Beryllium Circle BE-M-03-CRCL Contact American Elements
(4N) 99.99% Beryllium Circle BE-M-04-CRCL Contact American Elements
(5N) 99.999% Beryllium Circle BE-M-05-CRCL Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Be 7440-41-7 24856053 5460467 MFCD00134032 231-150-7 N/A [BeH2] InChI=1S/Be ATBAMAFKBVZNFJ-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
9.01 Grey 1.848 gm/cc N/A 1277 °C 2970 °C 2.01 W/cm/K @ 298.2 K 4.0 microhm-cm @ 20 oC 1.5 Paulings 0.436 Cal/g/K @ 25 °C 73.9 K-cal/gm atom at 2467 °C 2.8 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity Beryllium Circles with the highest possible densityHigh Purity (99.99%) Metallic Circleand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Circle sizes range from 1" to 8" in diameter and from 2mm to 1/2" thick. We can also provide Circles outside this range. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes nanoparticles. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Beryllium as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Beryllium (Be) atomic and molecular weight, atomic number and elemental symbol Beryllium (atomic symbol: Be, atomic number: 4) is a Block S, Group 2, Period 2 element with an atomic weight of 9.012182. Beryllium Bohr ModelThe number of electrons in each of Beryllium's shells is [2, 2] and its electron configuration is [He] 2s2. The beryllium atom has a radius of 112 pm and a Van der Waals radius of 153 pm. Beryllium is a relatively rare element in the earth's crust; it can be found in minerals such as bertrandite, chrysoberyl, phenakite, and beryl, its most common source for commercial production. Beryllium was discovered by Louis Nicolas Vauquelin in 1797 and first isolated by Friedrich Wöhler and Antoine Bussy in 1828.Elemental Beryllium In its elemental form, beryllium has a gray metallic appearance. It is a soft metal that is both strong and brittle; its low density and high thermal conductivity make it useful for aerospace and military applications. It is also frequently used in X-ray equipment and particle physics. The origin of the name Beryllium comes from the Greek word "beryllos," meaning beryl. For more information on beryllium, including properties, safety data, research, and American Elements' catalog of beryllium products, visit the Beryllium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H301-H315-H317-H319-H330-H335-H350i-H372
T+
49-25-26-36/37/38-43-48/23
53-45
DS1750000
UN 1567 6.1/PG 2
3
Skull and Crossbones-Acute Toxicity  Health Hazard      

CUSTOMERS FOR BERYLLIUM CIRCLES HAVE ALSO LOOKED AT
Show Me MORE Forms of Beryllium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Beryllium

  • Shweta Dabhi, Venu Mankad, Prafulla K. Jha, A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • R.P. Doerner, M.J. Baldwin, D. Nishijima, Plasma-induced morphology of beryllium targets exposed in PISCES-B, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Jae-Hwan Kim, Masaru Nakamichi, Reactivity of plasma-sintered beryllium–titanium intermetallic compounds with water vapor, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • M. Klimenkov, V. Chakin, A. Moeslang, R. Rolli, TEM study of impurity segregations in beryllium pebbles, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Jae-Hwan Kim, Masaru Nakamichi, Effect of grain size on the hardness and reactivity of plasma-sintered beryllium, Journal of Nuclear Materials, Volume 453, Issues 1–3, October 2014
  • J. Roth, W.R. Wampler, M. Oberkofler, S. van Deusen, S. Elgeti, Deuterium retention and out-gassing from beryllium oxide on beryllium, Journal of Nuclear Materials, Volume 453, Issues 1–3, October 2014
  • R. García-Gutiérrez, M. Barboza-Flores, D. Berman-Mendoza, O.E. Contreras-López, A. Ramos-Carrazco, Synthesis and characterization of highly luminescent beryllium nitride, Materials Letters, Volume 132, 1 October 2014
  • K. Hacini, Z. Chouahda, A. Djedid, H. Meradji, S. Ghemid, F. El Haj Hassan, R. Khenata, Ab initio study of the structural, electronic, phase diagram, and thermal properties of cadium beryllium selenide mixed crystals, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • M.I. Airila, A. Järvinen, M. Groth, P. Belo, S. Wiesen, S. Brezinsek, K. Lawson, D. Borodin, A. Kirschner, J.P. Coad, K. Heinola, J. Likonen, M. Rubel, A. Widdowson, JET-EFDA Contributors, Preliminary Monte Carlo simulation of beryllium migration during JET ITER-like wall divertor operation, Journal of Nuclear Materials, Available online 16 September 2014
  • R.P. Doerner, I. Jepu, D. Nishijima, E. Safi, L. Bukonte, A. Lasa, K. Nordlund, T. Schwarz-Selinger, The relationship between gross and net erosion of beryllium at elevated temperature, Journal of Nuclear Materials, Available online 16 September 2014