Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals.

Title Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals.
Authors Z. Lu; V. Cherepakhin; I. Demianets; P.J. Lauridsen; T.J. Williams
Journal Chem Commun (Camb)
DOI 10.1039/c8cc03412e
Abstract

Selective hydrogen transfer remains a central research focus in catalysis: hydrogenation and dehydrogenation have central roles, both historical and contemporary, in all aspects of fuel, agricultural, pharmaceutical, and fine chemical synthesis. Our lab has been involved in this area by designing homogeneous catalysts for dehydrogenation and hydrogen transfer that fill needs ranging from on-demand hydrogen storage to fine chemical synthesis. A keen eye toward mechanism has enabled us to develop systems with excellent selectivity and longevity and demonstrate these in a diversity of high-value applications. Here we describe recent work from our lab in these areas that are linked by a central mechanistic trichotomy of catalyst initiation pathways that lead highly analogous precursors to a diversity of useful applications.

Citation Z. Lu; V. Cherepakhin; I. Demianets; P.J. Lauridsen; T.J. Williams.Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals.. Chem Commun (Camb). 2018. doi:10.1039/c8cc03412e

Related Elements

Iridium

See more Iridium products. Iridium (atomic symbol: Ir, atomic number: 77) is a Block D, Group 9, Period 6 element with an atomic weight of 192.217. The number of electrons in each of iridium's shells is [2, 8, 18, 32, 15, 2] and its electron configuration is [Xe] 4f14 5d7 6s2. Iridium Bohr ModelThe iridium atom has a radius of 136 pm and a Van der Waals radius of 202 pm. Iridium was discovered and first isolated by Smithson Tennant in 1803. In its elemental form, Iridium has a silvery white appearance. Iridium is a member of the platinum group of metals.Elemental Iridium It is the most corrosion resistant metal known and is the second-densest element (after osmium). It will not react with any acid and can only be attacked by certain molten salts, such as molten sodium chloride. Iridium is found as an uncombined element and in iridium-osmium alloys. Iridium's name is derived from the Greek goddess Iris, personification of the rainbow, on account of the striking and diverse colors of its salts.

Related Forms & Applications