Phytoremediation of cadmium and lead-polluted watersheds.

Title Phytoremediation of cadmium and lead-polluted watersheds.
Authors G. Kersten; B. Majestic; M. Quigley
Journal Ecotoxicol Environ Saf
DOI 10.1016/j.ecoenv.2016.12.001
Abstract

Abandoned hard rock mines and the resulting acid mine drainage (AMD) are a source of vast, environmental degradation that are toxic threats to plants, animals, and humans. Cadmium (Cd) and lead (Pb) are metal contaminants often found in AMD. In our mine outwash water samples, Cd and Pb concentrations were 300 and 40 times greater than EPA Aquatic Life Use water quality standards, respectively. We tested the phytoremediation characteristics, accumulation and tolerance of Cd and Pb contamination, for annual aboveground biomass harvest of three montane willows native to the Rocky Mountains: Salix drummondiana, S. monticola, and S. planifolia. We found S. monticola best suited for Pb remediation based on greater growth and tolerance in response to the low Pb treatment compared to the high Pb treatment. Salix monticola stems also contained higher Pb concentrations in control treatment compared to S. planifolia. We found S. planifolia and S. drummondiana best suited for Cd remediation. Salix drummondiana accumulated higher concentrations of Cd in stems than both S. monticola and S. planifolia. Salix planifolia accumulated nearly 2.5 times greater concentrations of Cd in stems in control treatment than did S. drummondiana. Salix planifolia also contained more total Cd in stems than did S. monticola in Cd treatments. Based on our results, S. drummondiana and S. planifolia could aid in reduction of Cd in watersheds, and S. monticola is better suited than is S. planifolia for aboveground accumulation and tolerance of Pb pollution.

Citation G. Kersten; B. Majestic; M. Quigley.Phytoremediation of cadmium and lead-polluted watersheds.. Ecotoxicol Environ Saf. 2017;137:225232. doi:10.1016/j.ecoenv.2016.12.001

Related Elements

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Cadmium

See more Cadmium products. Cadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr]4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm. Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'.