Iron Telluride

FeTe2
CAS 12023-03-9


Product Product Code Order or Specifications
(5N) 99.999% Iron Telluride Powder FE-TE-05-P Contact American Elements
(5N) 99.999% Iron Telluride Ingot FE-TE-05-I Contact American Elements
(5N) 99.999% Iron Telluride Chunk FE-TE-05-CK Contact American Elements
(5N) 99.999% Iron Telluride Lump FE-TE-05-L Contact American Elements
(5N) 99.999% Iron Telluride Sputtering Target FE-TE-05-ST Contact American Elements
(5N) 99.999% Iron Telluride Wafer FE-TE-05-WSX Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
FeTe2 12023-03-9 82813 N/A 234-672-3 bis(tellanylidene)iron N/A [Te]=[Fe]=[Te] InChI=1S/Fe.2Te NLNGCZOQLAKUDC-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
FeTe2 311.045 crystalline solid 914 °C
(1677 °F)
N/A 6.8 g/cm3 313.746 315.747 0 Safety Data Sheet

Telluride IonIron Telluride (FeTe2) is a crystal grown product generally immediately available in most volumes. American Elements can produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies.American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us for information on lead time and pricing above.

American Elements semiconducting materials are crystal structures produced from ultra high purity starting materials synthesized by our high purity production facility which includes several large electric muffle furnaces, a tube furnace for hydrogen reduction, 50 gallon glass-lined Pfaudler reactors supported by our analytical laboratory containing X-ray diffraction, SEM, AA, BET surface area, and ICP Spectrometry for trace metals analysis. See a discussion of American Elements Ultra High Purity and Analytical capabilities. See Crystal Growth for processes used to fabricate semiconductor materials, which include: crystal "pulling" by the Czochralski method for production of semiconductor materials; flux growth and gradient freeze; and directional solidification of fluorites using both the Bridgman-Stockbarger and float zoning techniques.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.

Tellurium Bohr ModelTellurium (Te) atomic and molecular weight, atomic number and elemental symbolTellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. The number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance.Elemental Tellurium The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Tellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word 'Tellus' meaning Earth. For more information on tellurium, including properties, safety data, research, and American Elements' catalog of tellurium products, visit the Tellurium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

IRON TELLURIDE (FeTe2) SYNONYMS
Iron ditelluride

CUSTOMERS FOR IRON TELLURIDE HAVE ALSO LOOKED AT
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Iron

  • B.S. Yilbas, I. Toor, C. Karatas, J. Malik, I. Ovali, Laser treatment of dual matrix structured cast iron surface: Corrosion resistance of surface, Optics and Lasers in Engineering, Volume 64, January 2015
  • Ussadawut Patakham, Chaowalit Limmaneevichitr, Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Ming Luo, Shuzhong Wang, Longfei Wang, Mingming Lv, Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion, Journal of Power Sources, Volume 270, 15 December 2014
  • Ercan Avci, Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor, Journal of Power Sources, Volume 270, 15 December 2014
  • Nicholas S. Hudak, Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Yong Zhang, Hongliang Zheng, Yue Liu, Lei Shi, Qingming Zhao, Xuelei Tian, Efficient use of iron impurity in Al–Si alloys, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Lin Lin, Meng Li, Liqing Jiang, Yongfeng Li, Dajun Liu, Xingquan He, Lili Cui, A novel iron (?) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium, Journal of Power Sources, Volume 268, 5 December 2014
  • Jun-chao Zheng, Xing Ou, Bao Zhang, Chao Shen, jia-feng Zhang, Lei Ming, Ya-dong Han, Effects of Ni2+ doping on the performances of lithium iron pyrophosphate cathode material, Journal of Power Sources, Volume 268, 5 December 2014
  • Wassima El Mofid, Svetlozar Ivanov, Alexander Konkin, Andreas Bund, A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution, Journal of Power Sources, Volume 268, 5 December 2014
  • Hiroyuki Usui, Kazuma Nouno, Yuya Takemoto, Kengo Nakada, Akira Ishii, Hiroki Sakaguchi, Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites, Journal of Power Sources, Volume 268, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Weiling Wang, Sen Luo, Miaoyong Zhu, Dendritic growth of high carbon iron-based alloy under constrained melt flow, Computational Materials Science, Volume 95, December 2014
  • Haohua Wen, C.H. Woo, Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Farong Wan, Qian Zhan, Yi Long, Shanwu Yang, Gaowei Zhang, Yufeng Du, Zhijie Jiao, Somei Ohnuki, The behavior of vacancy-type dislocation loops under electron irradiation in iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • R.E. Stoller, Yu.N. Osetsky, An atomistic assessment of helium behavior in iron, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, F. Jomard, Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Qianxu Ye, Hongbo Zhu, Libo Zhang, Ji Ma, Li Zhou, Peng Liu, Jian Chen, Guo Chen, Jinhui Peng, Preparation of reduced iron powder using combined distribution of wood-charcoal by microwave heating, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Tsuyoshi Honma, Atsushi Sato, Noriko Ito, Takuya Togashi, Kenji Shinozaki, Takayuki Komatsu, Crystallization behavior of sodium iron phosphate glass Na2 - xFe1 + 0.5xP2O7 for sodium ion batteries, Journal of Non-Crystalline Solids, Volume 404, 15 November 2014
  • Guanghua Wang, Kezhu Jiang, Mingli Xu, Chungang Min, Baohua Ma, Xikun Yang, A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer, Journal of Power Sources, Volume 266, 15 November 2014
  • I. Quinzeni, S. Ferrari, E. Quartarone, D. Capsoni, M. Caputo, A. Goldoni, P. Mustarelli, M. Bini, Fabrication and electrochemical characterization of amorphous lithium iron silicate thin films as positive electrodes for lithium batteries, Journal of Power Sources, Volume 266, 15 November 2014

Recent Research & Development for Tellurides

  • Xiaokang Fan, Kefeng Li, Xia Li, Peiwen Kuan, Xin Wang, Lili Hu, Spectroscopic properties of 2.7 µm emission in Er3+ doped telluride glasses and fibers, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Phuoc Huu Le, Chien-Neng Liao, Chih Wei Luo, Jihperng Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Masayuki Takashiri, Kazuo Imai, Masato Uyama, Harutoshi Hagino, Saburo Tanaka, Koji Miyazaki, Yoshitake Nishi, Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Tobias Rosenthal, Simon Welzmiller, Lukas Neudert, Philipp Urban, Andy Fitch, Oliver Oeckler, Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides, Journal of Solid State Chemistry, Volume 219, November 2014
  • Zhenzhou Rong, Xi'an Fan, Fan Yang, Xinzhi Cai, Guangqiang Li, Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds, Powder Technology, Volume 267, November 2014
  • Bárbara Tirloni, Adelheid Hagenbach, Ernesto Schulz Lang, Ulrich Abram, Thiocarbamoylbenzimidophenylselenide and -telluride and their reactions with metal ions, Polyhedron, Volume 79, 5 September 2014
  • M.J. Winiarski, M. Samsel-Czekala, A. Ciechan, Strain effects on electronic structure and superconductivity in the iron telluride, Intermetallics, Volume 52, September 2014
  • Mohsen K. Keshavarz, Dimitri Vasilevskiy, Remo A. Masut, Sylvain Turenne, Synthesis and characterization of bismuth telluride-based thermoelectric nanocomposites containing MoS2 nano-inclusions, Materials Characterization, Volume 95, September 2014
  • K. Aravinth, G. Anandha Babu, P. Ramasamy, Silver gallium telluride (AgGaTe2) single crystal: Synthesis, accelerated crucible rotation-Bridgman growth and characterization, Materials Science in Semiconductor Processing, Volume 24, August 2014
  • Zhaoyun Ge, Ling Xu, Renqi Zhang, Zhaoguo Xue, Hongyu Wang, Jun Xu, Yao Yu, Weining Su, Zhongyuan Ma, Kunji Chen, Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells, Applied Surface Science, Available online 18 July 2014
  • Esha V. Shah, Debesh R. Roy, A comparative DFT study on electronic, thermodynamic and optical properties of telluride compounds, Computational Materials Science, Volume 88, 1 June 2014
  • Roberta Cargnelutti, Ernesto S. Lang, Davi F. Back, Ricardo F. Schumacher, Electrophilic cyclization of homopropargyl tellurides: Synthesis and supramolecular structures of 2-aryl-3-iodo-1-phenyl-tellurophenium iodides and polyiodides, Polyhedron, Volume 73, 8 May 2014
  • Hyoungseok Kim, Kyounghoon Cha, Vasilis M. Fthenakis, Parikhit Sinha, Tak Hur, Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems, Solar Energy, Volume 103, May 2014
  • Wen Hsuan Chao, Yi Ray Chen, Shih Chun Tseng, Ping Hsing Yang, Ren Jye Wu, Jenn Yeu Hwang, Enhanced thermoelectric properties of metal film on bismuth telluride-based materials, Thin Solid Films, Available online 18 April 2014
  • Yang Zhou, Liangliang Li, Qing Tan, Jing-Feng Li, Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering, Journal of Alloys and Compounds, Volume 590, 25 March 2014
  • Nicolas Berchenko, Sergey Fadeev, Volodymyr Savchyn, Kurban Kurbanov, Malgorzata Trzyna, Jozef Cebulski, Pb–Te–O phase equilibrium diagram and the lead telluride thermal oxidation, Thermochimica Acta, Volume 579, 10 March 2014
  • B. Bahloul, A. Bentabet, L. Amirouche, Y. Bouhadda, S. Bounab, B. Deghfel, N. Fenineche, Ab initio calculations of structural, electronic, optical and thermodynamic properties of alkaline earth tellurides BaxSr1-XTe, Journal of Physics and Chemistry of Solids, Volume 75, Issue 3, March 2014
  • Liyan Zhou, Shancheng Yan, Tao Lu, Yi Shi, Jianyu Wang, Fan Yang, Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties, Journal of Solid State Chemistry, Volume 211, March 2014
  • Zhenyu Zhang, Bo Wang, Xianzhong Zhang, A maximum in the hardness of nanotwinned cadmium telluride, Scripta Materialia, Volumes 72–73, February 2014
  • Guoqiu Yuan, Yusong Li, Ning Bao, Jianwen Miao, Cunwang Ge, Yihong Wang, Facile synthesis and thermoelectric studies of n-type bismuth telluride nanorods with cathodic stripping Te electrode, Materials Chemistry and Physics, Volume 143, Issue 2, 15 January 2014