The Effect of High-dose Parenteral Sodium Selenite in Critically Ill Patients following Sepsis: A Clinical and Mechanistic Study.

Title The Effect of High-dose Parenteral Sodium Selenite in Critically Ill Patients following Sepsis: A Clinical and Mechanistic Study.
Authors L. Chelkeba; A. Ahmadi; M. Abdollahi; A. Najafi; M.Hosein Ghadimi; R. Mosaed; M. Mojtahedzadeh
Journal Indian J Crit Care Med
DOI 10.4103/ijccm.IJCCM_343_16
Abstract

INTRODUCTION: Severe sepsis and septic shock is characterized by inflammation and oxidative stress. Selenium levels have been reported to be low due to loss or increased requirements during severe sepsis and septic shock. We investigated the effect of high-dose parenteral selenium administration in septic patients.

METHODS: A prospective, randomized control clinical trial was performed in septic patients. After randomization, patients in selenium group received high-dose parenteral sodium selenite (2 mg intravenous [IV] bolus followed by 1.5 mg IV continuous infusion daily for 14 days) plus standard therapy and the control group received standard therapy. The primary endpoint was mortality at 28 days. Changes in the mean levels of high mobility group box-1 (HMGB-1) protein and superoxide dismutase (SOD), duration of vasopressor therapy, incidence of acute renal failure, and 60 days' mortality were secondary endpoints.

RESULTS: Fifty-four patients were randomized into selenium group (n = 29) and control group (n = 25). There was no significant difference in 28-day mortality. No significant difference between the two groups with respect to the average levels of HMGB-1 protein and SOD at any point in time over the course of 14 days had observed.

CONCLUSION: In early administration within the first 6 h of sepsis diagnosis, our study demonstrated that high-dose parenteral selenium administration had no significant effect either on 28-day mortality or the mean levels of HMGB-1 and SOD (Trial Registration: IRCT201212082887N4 at WHO Clinical Trial Registry, August 29, 2014).

Citation L. Chelkeba; A. Ahmadi; M. Abdollahi; A. Najafi; M.Hosein Ghadimi; R. Mosaed; M. Mojtahedzadeh.The Effect of High-dose Parenteral Sodium Selenite in Critically Ill Patients following Sepsis: A Clinical and Mechanistic Study.. Indian J Crit Care Med. 2017;21(5):287293. doi:10.4103/ijccm.IJCCM_343_16

Related Elements

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Related Forms & Applications